Skip to main content

Abstract

Increasing human activity has highlighted the need for rapid and accurate chemical analysis of contaminants. Laser Induced Plasma Spectroscopy (LIBS) is an ideal solution because it has advantages such as in-situ analysis capable, it does not require sample preparation and the amount of sample required for analysis is minimal. This paper uses LIBS for heavy metals analysis in receiving water bodies. The LIBS system employed uses a Q: Switched multipulsed Nd:YAG laser, which favors the intensity of the emission spectra, showing sharper and improved detection limits. The obtained results are used in training a neural network to predict the elemental composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Einstein, Zur Quantentheorie der Strahlung (Hirzel, Leipzig, 1917)

    Google Scholar 

  2. T.H. Maiman, Stimulated Optical Radiation in Ruby (Macmillan, London, 1960)

    Google Scholar 

  3. Y. Yu, W. Zhou, X. Su, Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy. Opt. Commun. 333, 62–66 (2014)

    Google Scholar 

  4. C.-G. Yuan, K. Lin, A. Chang, Determination of trace mercury in environmental samples by cold vapor atomic fluorescence spectrometry after cloud point extraction. Microchim. Acta 171, 313–319 (2010)

    Google Scholar 

  5. J.R. Dean, G. Wade, I.J. Barnabas, Determination of triazine herbicides in environmental samples. J. Chromatogr. A 733, 295–335 (1996)

    Google Scholar 

  6. A. Hosseini-Bandegharaei, M. Sarwghadi, A. Heydarbeigi, S.H. Hosseini, M. Nedaie, Solid-phase extraction of trace amounts of uranium (VI) in environmental water samples using an extractant-impregnated resin followed by detection with UV-Vis spectrophotometry. J. Chem. 2013, 10 (2013)

    Google Scholar 

  7. D. Pröfrock, A. Prange, Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends. Appl. Spectrosc. 66, 843–868 (2012)

    Google Scholar 

  8. H. Qiu, G. Luo, A simple and rapid method for determination of petroleum oils in sewage sludge samples with ultrasonic solvent extraction by infrared spectrophotometry under optimized analytical conditions. Anal. Methods 4, 3891–3896 (2012)

    Google Scholar 

  9. D.W. Hahn, N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 66, 347–419 (2012)

    Google Scholar 

  10. R. Gürkan, Ö. Yılmaz, Indirect quantification of trace levels cyanide in environmental waters through flame atomic absorption spectrometry coupled with cloud point extraction. J. Iran. Chem. Soc. 10, 631–642 (2013)

    Google Scholar 

  11. N.O. Mexicana, “NMX-AA-51-1981, Análisis de agua,” Determinación de metales. Método Espectrofotométrico de Absorción Atómica: México, Secretaría de Economía, 1981.

    Google Scholar 

  12. E.F. Runge, Spectrochemical analysis using a pulsed laser source. Spectrochim. Acta B At. Spectrosc. 20, 733–736 (1964)

    Google Scholar 

  13. T. Flores, L. Ponce, M. Arronte, E. de Posada, Free-running and Q: switched LIBS measurements during the laser ablation of Prickle Pears spines. Opt. Lasers Eng. 47(5), 578–583 (2009)

    Google Scholar 

  14. J.O. Cáceres, J. Tornero López, H.H. Telle, A. González Ureña, Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc. 56, 831–838 (2001)

    Google Scholar 

  15. H. Sobral, R. Sanginés, A. Trujillo-Vázquez, Detection of trace elements in ice and water by laser-induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc. 78, 62–66 (2012)

    Google Scholar 

  16. A. De Giacomo, M. Dell’Aglio, O. De Pascale, M. Capitelli, From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples. Spectrochim. Acta B At. Spectrosc. 62, 721–738 (2007)

    Google Scholar 

  17. D. Alamelu, A. Sarkar, S.K. Aggarwal, Laser-induced breakdown spectroscopy for simultaneous determination of Sm, Eu and Gd in aqueous solution. Talanta 77(1), 256–261 (2008)

    Google Scholar 

  18. A. Sarkar, D. Alamelu, S.K. Aggarwal, Determination of thorium and uranium in solution by laser-induced breakdown spectrometry. Appl. Opt. 47(31), G58–G64 (2008)

    Google Scholar 

  19. Y. Lee, S.-W. Oh, S.-H. Han, Laser-induced breakdown spectroscopy (LIBS) of heavy metal ions at the sub-parts per million level in water. Appl. Spectrosc. 66(12), 1385–1396 (2012)

    Google Scholar 

  20. M. Bukhari, M.A. Awan, I.A. Qazi, M.A. Baig, Development of a method for the determination of chromium and cadmium in tannery wastewater using laser-induced breakdown spectroscopy. J. Anal. Methods Chem. 2012, 7 (2012)

    Google Scholar 

  21. D. Zhu, L. Wu, B. Wang, J. Chen, J. Lu, X. Ni, Determination of Ca and Mg in aqueous solution by laser-induced breakdown spectroscopy using absorbent paper substrates. Appl. Opt. 50(29), 5695–5699 (2011)

    Google Scholar 

  22. M. Zheng, M. Yao, X. He, J. Ouyang, Y. Lin, W. Li, M. Liu, Improving detection sensitivity of Cu in sewage by laser induced breakdown spectroscopy using filter paper enrichment. Laser Optoelectron. Prog. 7, 165–170 (2013)

    Google Scholar 

  23. A. Sarkar, S.K. Aggarwal, K. Sasibhusan, D. Alamelu, Determination of sub—ppm levels of boron in ground water samples by laser induced breakdown spectroscopy. Microchimica Acta 168(1), 65–69 (2009)

    Google Scholar 

  24. Y. Wang, N. Zhao, M. Ma, C. Wang, Y. Yu, D. Meng, J. Liu, W. Liu, Chromium detection in water enriched with graphite based on laser-induced breakdown spectroscopy. Laser Technol. 37(6), 808–811 (2013a)

    Google Scholar 

  25. H. Shi, D. Chen, Y.-J. Zhang, Study on measurement of trace heavy metal Ni in water by laser induced breakdown spectroscopy technique. Spectrosc. Spectr. Anal. 32(1), 25–28 (2012)

    MathSciNet  Google Scholar 

  26. C. Wang, J. Liu, N. Zhao, H. Shi, C. Lu, L. Liu, M. Ma, W. Zhang, D. Chen, Y. Zhang, W. Liu, Enrichment of trace lead in water with graphite and measurement by laser-induced breakdown spectroscopy. Chin. J. Lasers 38(11), 246–250 (2011)

    Google Scholar 

  27. W.C.-L.L. Jian-Guo, Z.N.-J.M. Ming-Jun, W.Y.H.L.Z. Da, H.Y.Y.M. De-Shuo, Z.W.L.J.Z. Yu, J.L. Wen-Qing, Comparative analysis of quantitative method on heavy metal detection in water with laser-induced breakdown spectroscopy. Acta Physica Sinica 12, 050 (2013)

    Google Scholar 

  28. F. Zhao, Z. Chen, F. Zhang, R. Li, J. Zhou, Ultra-sensitive detection of heavy metal ions in tap water by laser-induced breakdown spectroscopy with the assistance of electrical-deposition. Anal. Methods 2(4), 408–414 (2010)

    Google Scholar 

  29. W. Xiong, Q. Zhang, F. Zhao, R.H. Li, High sensitive detection of trace chromium ion based on laser induced breakdown spectroscopy. J. At. Mol. Phys. 2, 283–287 (2010)

    Google Scholar 

  30. I. Schechter, V. Bulatov, R. Krasniker, in Laser Induced Plasma Spectroscopy and Applications, Plasma morphology and matrix effects interrelation in LIBS analysis (Orlando, Florida, 2002), p. ThD4.

    Google Scholar 

  31. P. Inakollu, T. Philip, A.K. Rai, F.-Y. Yueh, J.P. Singh, A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods. Spectrochim. Acta B At. Spectrosc. 64, 99–104 (2009)

    Google Scholar 

  32. J. El Haddad, M. Villot-Kadri, A. Ismaël, G. Gallou, K. Michel, D. Bruyère et al., Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc. 79–80, 51–57 (2013)

    Google Scholar 

  33. U. S. Army, United States Army Research Laboratory (ARL) (2010), http://www.arl.army.mil/www/default.cfm?page = 250

  34. U. S. D. o. Commerce, National Institute of Standars and Technology (2010), http://physics.nist.gov/

  35. Ø. Hammer, D.A.T. Harper, P.D. Ryan, PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1094–8074 (2001)

    Google Scholar 

  36. S. Lloyd, Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137 (1982)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors thank CONACYT and COFAA-IPN for the financial support. This work was supported by project SIP-IPN 20150572.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Frías .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Frías, A. et al. (2017). The Technique of Laser-Induced Breakdown Spectroscopy for Determination of Heavy Metals in the Receiving Body of Water. In: Martínez-García, A., Furlong, C., Barrientos, B., Pryputniewicz, R. (eds) Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications, Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI), 2015. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-28513-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28513-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28511-5

  • Online ISBN: 978-3-319-28513-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics