Skip to main content

An Improved Approach to Crowd Event Detection by Reducing Data Dimensions

  • Conference paper
  • First Online:
Advances in Signal Processing and Intelligent Recognition Systems

Abstract

Crowd monitoring is a critical application in video surveillance. Crowd events such as running, walking, merging, splitting, dispersion, and evacuation inform crowd management about the behavior of groups of people. For an effective crowd management, detection of crowd events provides an early sign of the behavior of the people. However, crowd event detection using videos is a highly challenging task because of several challenges such as non-rigid human body motions, occlusions, unavailability of distinguishing features due to occlusions, unpredictability in people movements, and other. In addition, the video itself is a high-dimensional data and analyzing to detect events becomes further complicated. One way of tackling the huge volume of video data is to represent a video using low-dimensional equivalent. However, reducing the video data size needs to consider the complex data structure and events embedded in a video. To this extent, we focus on detection of crowd events using the Isometric Mapping (ISOMAP) and Support Vector Machine (SVM). The ISOMAP is used to construct the low-dimensional representation of the feature vectors, and then an SVM is used for training and classification. The proposed approach uses Haar wavelets to extract Gray Level Coefficient Matrix (GLCM). Later, the approach extracts four statistical features (contrast, correlating, energy, and homogeneity) at different levels of Haar wavelet decomposition. Experiment results suggest that the proposed approach is shown to perform better when compared with existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003). doi:10.1162/089976603321780317

    Article  MATH  Google Scholar 

  2. Benabbas, Y., Ihaddadene, N., Djeraba, C.: Motion pattern extraction and event detection for automatic visual surveillance. J. Image Video Process. 2011, 1–15 (2011). doi:10.1155/2011/163682

    Article  Google Scholar 

  3. Chan, A.B., Morrow, M., Vasconcelos, N.: Analysis of crowded scenes using holistic properties. In: Performance Evaluation of Tracking and Surveillance workshop at CVPR, pp. 101–108. IEEE (2009)

    Google Scholar 

  4. Chang, C.C., Lin, C.J.:

    Google Scholar 

  5. Chang, Y., Hu, C., Feris, R., Turk, M.: Manifold based analysis of facial expression. Image and Vision Computing 24(6), 605–614 (2006)

    Article  Google Scholar 

  6. Chen, Y., Zhong, Z., Ka Keung, L., Yangsheng, X.: Multi-agent based surveillance. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2810–2815. IEEE (2006). doi:10.1109/iros.2006.282064

    Google Scholar 

  7. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Computer Vision–ECCV 2006, pp. 428–441. Springer (2006)

    Google Scholar 

  8. Ekin, A., Mehrotra, R., et al.: Automatic soccer video analysis and summarization. IEEE Transactions on Image Processing 12(7), 796–807 (2003)

    Article  Google Scholar 

  9. Enzweiler, M., Gavrila, D.M.: Monocular pedestrian detection: Survey and experiments. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(12), 2179–2195 (2009)

    Article  Google Scholar 

  10. Ferryman, J.: PETS 2009 benchmark data (2009). http://www.cvg.rdg.ac.uk/PETS2009/a.html (accessed May 19, 2014)

  11. Foresti, G.L., Micheloni, C., Snidaro, L., Remagnino, P., Ellis, T.: Active video-based surveillance system: the low-level image and video processing techniques needed for implementation. IEEE Signal Processing Magazine 22(2), 25–37 (2005)

    Article  Google Scholar 

  12. Gárate, C., Bilinsky, P., Bremond, F.: Crowd event recognition using HOG tracker. In: 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS-Winter), pp. 1–6. IEEE (2009). doi:10.1109/pets-winter.2009.5399727

  13. Guo, G., Fu, Y., Dyer, C.R., Huang, T.S.: Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Transactions on Image Processing 17(7), 1178–1188 (2008)

    Article  MathSciNet  Google Scholar 

  14. Haar, A.: Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen 69(3), 331–371 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hotelling, H.: Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24(6), 417–441 (1933). doi:10.1037/h0071325

    Article  Google Scholar 

  16. Hughes, R.L.: A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological 36(6), 507–535 (2002)

    Article  Google Scholar 

  17. Ke, Y., Sukthankar, R., Hebert, M.: Volumetric features for video event detection. Interantional Journal of Computer Vision 88(3), 339–362 (2010). doi:10.1007/s11263-009-0308-z

    Article  MathSciNet  Google Scholar 

  18. Lee, J.M.: Riemannian Manifolds: An Introduction to Curvature, vol. 176. Springer (1997)

    Google Scholar 

  19. Li, R., Chellappa, R., Zhou, S.K.: Learning multi-modal densities on discriminative temporal interaction manifold for group activity recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2450–2457. IEEE (2009). doi:10.1109/cvpr.2009.5206676

    Google Scholar 

  20. Ma, Y., Fu, Y.: Manifold Learning Theory and Applications. CRC Press, Inc. (2011)

    Google Scholar 

  21. Mallat, S.: A wavelet tour of signal processing: the sparse way. Academic press (2008)

    Google Scholar 

  22. Pless, R., Souvenir, R.: A survey of manifold learning for images. IPSJ Transactions on Computer Vision and Applications 1, 83–94 (2009)

    Article  Google Scholar 

  23. Rao, A.S., Gubbi, J., Marusic, S., Palaniswami, M.: Estimation of crowd density by clustering motion cues. The Visual Computer, 1–20 (2014). doi:10.1007/s00371-014-1032-4

    Google Scholar 

  24. Rao, A.S., Gubbi, J., Marusic, S., Palaniswami, M.: Probabilistic detection of crowd events on riemannian manifolds. In: 2014 International Conference on Digital lmage Computing: Techniques and Applications (DlCTA), pp. 1–8. IEEE (2014). doi:10.1109/DICTA.2014.7008124

    Google Scholar 

  25. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000). doi:10.1126/science.290.5500.2323

    Article  Google Scholar 

  26. Souvenir, R., Pless, R.: Manifold clustering. In: Tenth IEEE International Conference on Computer Vision (ICCV), vol. 1, pp. 648–653. IEEE (2005)

    Google Scholar 

  27. Souvenir, R., Pless, R.: Image distance functions for manifold learning. Image and Vision Computing 25(3), 365–373 (2007)

    Article  Google Scholar 

  28. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000). doi:10.1126/science.290.5500.2319

    Article  Google Scholar 

  29. Thida, M., How-Lung, E., Remagnino, P.: Laplacian eigenmap with temporal constraints for local abnormality detection in crowded scenes. IEEE Transactions on Cybernetics 43(6), 2147–2156 (2013). doi:10.1109/TCYB.2013.2242059

    Article  Google Scholar 

  30. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846. IEEE (1998)

    Google Scholar 

  31. Torgerson, W.: Multidimensional scaling: I. theory and method. Psychometrika 17(4), 401–419 (1952). doi:10.1007/BF02288916

    Article  MathSciNet  MATH  Google Scholar 

  32. Utasi, Á., Kiss, Á., Szirányi, T.: Statistical filters for crowd image analysis. In: Proceedings of the 11th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (in conjunction with CVPR 2009). IEEE (2009)

    Google Scholar 

  33. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys 38(4) (2006). doi:10.1145/1177352.1177355

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravinda S. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rao, A.S., Gubbi, J., Palaniswami, M. (2016). An Improved Approach to Crowd Event Detection by Reducing Data Dimensions. In: Thampi, S., Bandyopadhyay, S., Krishnan, S., Li, KC., Mosin, S., Ma, M. (eds) Advances in Signal Processing and Intelligent Recognition Systems. Advances in Intelligent Systems and Computing, vol 425. Springer, Cham. https://doi.org/10.1007/978-3-319-28658-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28658-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28656-3

  • Online ISBN: 978-3-319-28658-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics