Skip to main content

Electromechanical Coupling Factors and Their Anisotropy in Piezoelectric and Ferroelectric Materials

  • Chapter
  • First Online:
Modern Piezoelectric Energy-Harvesting Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 238))

  • 1718 Accesses

Abstract

The ECF characterises the conversion of electrical energy into the mechanical form and the conversion of mechanical energy into the electric form (see work [1, 2] and Sect. 1.2). A system of the ECFs (see, for example, (1.21)–(1.27) for poled FCs) is introduced to describe the conversion and takes into account the symmetry of a piezoelectric material, orientations of its crystallographic axes, input and output arrangements, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In our evaluations of ECFs and their anisotropy, we varied the volume fraction m of the SC inclusions from 0 to 0.5. The upper limit m = π/6 at the regular arrangement of spherical inclusions (ρ = 1 in the composite structure shown in Fig. 2.7) whose centres form a simple cubic lattice. We add that in the case of ρ = 0 (1–3 composite with cylindrical rods), the upper limit is m = π/4.

References

  1. Ikeda T (1990) Fundamentals of piezoelectricity. Oxford University Press, Oxford

    Google Scholar 

  2. Zheludev IS (1971) Physics of crystalline dielectrics. In: Electrical properties, vol. 2. Plenum, New York

    Google Scholar 

  3. Berlincourt DA, Cerran DR, Jaffe H (1964) Piezoelectric and piezomagnetic materials and their function in transducers. In: Mason W (ed) Physical acoustics. Principles and methods. Methods and devices, vol 1. Academic Press, New York, pp 169–270

    Google Scholar 

  4. Blistanov AA, Bondarenko VS, Perelomova NV, Strizhevskaya FN, Chkalova VV, Shaskol’skaya MP (1982) Acoustic crystals (Handbook). Nauka, Moscow (in Russian)

    Google Scholar 

  5. Xu Y (1991) Ferroelectric materials and their applications. North-Holland, Amsterdam

    Google Scholar 

  6. Topolov VYu, Bisegna P, Bowen CR (2014) Piezo-active composites. Orientation effects and anisotropy factors. Springer, Heidelberg

    Book  Google Scholar 

  7. Fesenko EG, Gavrilyachenko VG, Semenchev AF (1990) Domain structure of multiaxial ferroelectric crystals. Rostov University Press, Rostov-on-Don (in Russian)

    Google Scholar 

  8. Turik AV (1970) Elastic, piezoelectric, and dielectric properties of single crystals of BaTiO3 with a laminar domain structure. Sov Phys Solid State 12:688–693

    Google Scholar 

  9. Aleshin VI (1990) Domain-orientation contribution into constants of ferroelectric polydomain single crystal. Zh Tekh Fiz 60:179–183 (in Russian)

    Google Scholar 

  10. Park S-E, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82:1804–1811

    Article  Google Scholar 

  11. Dammak H, Renault A-É, Gaucher P, Thi MP, Calvarin G (2003) Origin of the giant piezoelectric properties in the [001] domain engineered relaxor single crystals. Jpn J Appl Phys 1(42):6477–6482

    Article  Google Scholar 

  12. Zhang R, Jiang B, Cao W (2001) Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals. J Appl Phys 90:3471–3475

    Article  Google Scholar 

  13. Zhang R, Jiang W, Jiang B, Cao W (2002) Elastic, dielectric and piezoelectric coefficients of domain engineered 0.70Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 single crystal. In: Cohen RE (ed) Fundamental physics of ferroelectrics. American Institute of Physics, Melville, pp 188–197

    Google Scholar 

  14. Dantsiger AYa, Razumovskaya ON, Reznitchenko LA, Grineva LD, Devlikanova RU, Dudkina SI, Gavrilyatchenko SV, Dergunova NV, Klevtsov AN (1994) Highly effective piezoceramic materials (Handbook). Kniga, Rostov-on-Don (in Russian)

    Google Scholar 

  15. Gorish AV, Dudkevich VP, Kupriyanov MF, Panich AE, Turik AV (1999) Piezoelectric device-making. In: Physics of ferroelectric ceramics, vol 1. Radiotekhnika, Moscow (in Russian)

    Google Scholar 

  16. Kelly J, Leonard M, Tantigate C, Safari A (1997) Effect of composition on the electromechanical properties of (1 − x)Pb(Mg1/3Nb2/3)O3 − xPbTiO3 ceramics. J Am Ceram Soc 80:957–964

    Article  Google Scholar 

  17. Gururaja TR, Safari A, Newnham RE, Cross LE (1988) Piezoelectric ceramic-polymer composites for transducer applications. In: Levinson LM (ed) Electronic ceramics: properties, devices, and applications. Marcel Dekker, Basel, pp 92–128

    Google Scholar 

  18. Topolov VYu, Bowen CR (2009) Electromechanical properties in composites based on ferroelectrics. Springer, London

    Google Scholar 

  19. Topolov VYu, Bowen CR (2015) High-performance 1–3-type lead-free piezo-composites with auxetic polyethylene matrices. Mater Lett 142:265–268

    Article  Google Scholar 

  20. Zheng L, Huo X, Wang R, Wang J, Jiang W, Cao W (2013) Large size lead-free (Na, K)(Nb, Ta)O3 piezoelectric single crystal: growth and full tensor properties. CrystEngComm 15:7718–7722

    Article  Google Scholar 

  21. Huo X, Zheng L, Zhang R, Wang R, Wang J, Sang S, Wang Y, Yang B, Cao W (2014) A high quality lead-free (Li, Ta) modified (K, Na)NbO3 single crystal and its complete set of elastic, dielectric and piezoelectric coefficients with macroscopic 4mm symmetry. CrystEngComm 16:9828–9833

    Article  Google Scholar 

  22. Evans KE, Alderson KL (1992) The static and dynamic moduli of auxetic microporous polyethylene. J Mater Sci Lett 11:1721–1724

    Article  Google Scholar 

  23. Groznov IN (1983) Dielectric permittivity. In: Physics encyclopaedia. Sovetskaya Entsiklopediya, Moscow, pp 178–179 (in Russian)

    Google Scholar 

  24. Smotrakov VG, Eremkin VV, Alyoshin VA, Tsikhotsky ES (2000) Preparation and study of single-crystal–ceramic composite. Izv Akad Nauk, Ser Fiz 64:1220–1223 (in Russian)

    Google Scholar 

  25. Topolov VYu, Glushanin SV (2002) Effective electromechanical properties of ferroelectric piezoactive composites of the crystal–ceramic type based on (Pb1–x Ca x )TiO3. Tech Phys Lett 28:279–282

    Article  Google Scholar 

  26. Glushanin SV, Topolov VYu, Turik AV (2003) Prediction of piezoelectric properties of crystal-ceramic composites. Crystallogr Rep 48:491–499

    Article  Google Scholar 

  27. Takahashi H, Tukamoto S, Qiu J, Tani J, Sukigara T (2003) Property of composite ceramics composed of single crystals and ceramic matrix using hybrid sintering. Jpn J Appl Phys 1(42):6055–6058

    Article  Google Scholar 

  28. Ikegami S, Ueda I, Nagata T (1971) Electromechanical properties of PbTiO3 ceramics containing La and Mn. J Acoust Soc Am 50:1060–1066

    Article  Google Scholar 

  29. Nagatsuma K, Ito Y, Jyomura S, Takeuchi H, Ashida S (1985) Elastic properties of modified PbTiO3 ceramics with zero temperature coefficients. In: Taylor GW (ed) Ferroelectricity and related phenomena, vol 4., PiezoelectricityGordon and Breach Science Publishers, New York, pp 167–176

    Google Scholar 

  30. Levassort F, Thi MP, Hemery H, Marechal P, Tran-Huu-Hue L-P, Lethiecq M (2006) Piezoelectric textured ceramics: effective properties and application to ultrasonic transducers. Ultrasonics 44:e621–e626

    Article  Google Scholar 

  31. Gibiansky LV, Torquato S (1997) On the use of homogenization theory to design optimal piezocomposites for hydrophone applications. J Mech Phys Solids 45:689–708

    Article  MathSciNet  MATH  Google Scholar 

  32. Sigmund O, Torquato S, Aksay IA (1998) On the design of 1–3 piezocomposites using topology optimization. J Mater Res 13:1038–1048

    Article  Google Scholar 

  33. Topolov VYu, Filippov SE, Panich AE, Panich EA (2014) Highly anisotropic 1–3–0 composites based on ferroelectric ceramics: microgeometry—volume-fraction relations. Ferroelectrics 460:123–137

    Article  Google Scholar 

  34. Asakawa K, Hiraoka T, Akasaka Y, Hotta Y (2003) Method for manufacturing porous structure and method for forming pattern. US Patent 6,565,763

    Google Scholar 

  35. Clark P, Moya W, (2003) Three dimensional patterned porous structures. US Patent 6,627,291

    Google Scholar 

  36. Ritter T, Geng X, Shung KK, Lopath PD, Park S-E, Shrout TR (2000) Single crystal PZN/PT—polymer composites for ultrasound transducer applications. IEEE Trans Ultrason Ferroelectr Freq Control 47:792–800

    Article  Google Scholar 

  37. Cheng KC, Chan HLW, Choy CL, Yin Q, Luo H, Yin Z (2003) Single crystal PMN–0.33PT/epoxy 1–3 composites for ultrasonic transducer applications. IEEE Trans Ultrason Ferroelectr Freq Control 50:1177–1183

    Article  Google Scholar 

  38. Ren K, Liu Y, Geng X, Hofmann HF, Zhang QM (2006) Single crystal PMN–PT/epoxy 1–3 composite for energy-harvesting application. IEEE Trans Ultrason Ferroelectr Freq Control 53:631–638

    Article  Google Scholar 

  39. Wang F, He C, Tang Y, Zhao X, Luo H (2007) Single-crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3/epoxy 1–3 piezoelectric composites prepared by the lamination technique. Mater Chem Phys 105:273–277

    Article  Google Scholar 

  40. Cao H, Hugo Schmidt V, Zhang R, Cao W, Luo H (2003) Elastic, piezoelectric, and dielectric properties of 0.58Pb(Mg1/3Nb2/3)O3–0.42PbTiO3 single crystal. J Appl Phys 96:549–554

    Article  Google Scholar 

  41. Topolov VYu, Krivoruchko AV, Bisegna P (2011) Electromechanical coupling and its anisotropy in a novel 1–3–0 composite based on single-domain 0.58Pb(Mg1/3Nb2/3)O3–0.42PbTiO3 crystal. Compos Sci Technol 71:1082–1088

    Article  Google Scholar 

  42. Choy SH, Chan HLW, Ng MW, Liu PCK (2004) Study of 1–3 PZT fibre/epoxy composites with low volume fraction of ceramics. Integr Ferroelectr 63:109–115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Bowen .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bowen, C.R., Topolov, V.Y., Kim, H.A. (2016). Electromechanical Coupling Factors and Their Anisotropy in Piezoelectric and Ferroelectric Materials. In: Modern Piezoelectric Energy-Harvesting Materials. Springer Series in Materials Science, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-319-29143-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29143-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29141-3

  • Online ISBN: 978-3-319-29143-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics