Skip to main content

Terahertz Techniques in NDE

Abstract

So far, terahertz measurement technology has rarely been used in industry. This book chapter presents therefore the underlying technologies, the resulting possibilities and exemplary applications.

The introduction describes the basic properties of terahertz systems and the advantages of terahertz technology over established techniques such as infrared, X-rays and ultrasound.

The two industrially relevant terahertz techniques, time domain spectrometer and FMCW system, are described in detail. In addition, the metrological basics for their main applications are introduced.

Imaging is required in many applications. Different approaches are presented.

Before the chapter concludes with an outlook on future applications, current application examples are discussed. This concerns applications in the fields of coating thickness measurement, safety, materials research, testing of lightweight materials and inline testing.

An extensive reference list provides a deeper insight into the topics addressed.

This is a preview of subscription content, log in via an institution.

References

  • Baccouche B, Agostini P, Mohammadzadeh S, Kahl M, Weisenstein C, Jonuscheit J, Keil A, Löffler T, Sauer-Greff W, Urbansky R, Bolívar PH, Friederich F (2017) Three-dimensional terahertz imaging with sparse multistatic line arrays. IEEE J Sel Top Quantum Electron 234:8501411

    Google Scholar 

  • Böhmler M, Huber A, Eisele M (2016) THz nano-spectroscopy with 25 nm spatial and 10 f. time resolution. In: The 41st international conference on infrared, millimeter, and terahertz waves (IRMMW-THz) 16502507

    Google Scholar 

  • Bründermann E, Hübers H-W, Kimmitt MFG (eds) (2012) Terahertz techniques. Springer, Berlin/Heidelberg

    Google Scholar 

  • Catapano I, Soldovieri F, Mazzola L, Toscano C (2017) THz imaging as a method to detect defects of aeronautical coating. J Infrared Millimeter Terahertz Waves 3810:1264–1277

    Article  Google Scholar 

  • Chen J, Wang J, Cui H (2017) Nondestructive evaluation of glass fiber honeycomb sandwich panel using reflective terahertz imaging. J Sandw Struct Mater 0:1–13. https://doi.org/10.1177/1099636217711628

    Article  Google Scholar 

  • Consolino L, Bartalini S, de Natala P (2017) Terahertz frequency metrology for spectroscopic applications: a review. J Infrared Millimeter Terahertz Waves 3811:1289–1315

    Article  Google Scholar 

  • Cristofani E, Friederich F, Wohnsiedler S, Beigang R (2014) Non-destructive testing potential evaluation of a THz frequency-modulated continuous-wave imager for composite materials inspection. Opt Eng 53(03). https://doi.org/10.1117/1.OE.53.3.031211

  • Dietz RJB, Vieweg N, Puppe T, Zach A, Globisch B, Göbel T, Leisching T, Schell M (2014) All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling. Opt Lett 3922:6482–6485

    Article  Google Scholar 

  • Dong J, Kim B, Locquet A, McKeon P, Declerq N, Citrin DS (2015) Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves. Compos Part B Eng 79:667–675

    Article  Google Scholar 

  • Dong J, Wu X, Locquet A, Citrin DS (2017) Terahertz super-resolution stratigraphic characterization of multi-layered structures using spares deconvolution. IEEE Trans Terahertz Sci Technol 7:260–267

    Google Scholar 

  • Fetterman MR, Grata JA, Dinu R, Koenig M, Visnansky AD, Kiser WL (2007) Electro-optic polymer modulators as passive mm wave detectors. Proc SPIE 6472. https://doi.org/10.1117/12.701042

  • Friederich F, von Spiegel W, Bauer M, Meng F, Thomson MD, Boppel S, Lisauskas A, Hils B, Krozer V, Keil A, Loffler T, Henneberger R, Huhn AK, Spickermann G, Bolivar PH, Roskos HG (2011) THz active imaging systems with real-time capabilities. IEEE Trans Terahertz Sci Technol 1:183–200

    Article  Google Scholar 

  • Friederich F, May KH, Baccouche B, Matheis C, Bauer M, Jonuscheit J, Moor M, Denman D, Bramble J, Savage N (2018) Terahertz radome inspection. Photonics. https://doi.org/10.3390/photonics5010001

  • HÜBNER Photonics. http://www.hubner-terahertz.de/Produkte/T_COGNITION.html. Accessed 29 May 2018

  • Jaeschke T, Bredendiek C, Pohl N (2013) A 240 GHz ultra-wideband FMCW radar system with on-chip antennas for high resolution radar imaging. IEEE MTT-S Int Microw Symp. https://doi.org/10.1109/MWSYM.2013.6697495

  • Jonuscheit J (2014a) Zerstörungsfreie Analyse – Schichtdicken von Mehrsichtsystemen online messen. QZ Jahrg 59:94–96

    Google Scholar 

  • Jonuscheit J (2014b) Strukturanalyse mittels Terahertz. GIT Labor Fachz 5:27–29

    Google Scholar 

  • Kaimal H, Devi N, Ray S, Rajagopal P, Balasubramanian K, Pesala B (2018) Non-destructive evaluation of GFRP-wood sandwich structure composite using terahertz imaging. Proc SPIE 10531. https://doi.org/10.1117/12.2289718

  • Klatt G, Nagel M, Dekory T, Bartels A (2009) Rapid and precise read-out of terahertz sensors by high-speed asynchronous optical sampling. Electron Lett 45:310–311

    Article  Google Scholar 

  • Kolano M, Gräf B, Weber S, Molter D, van Freymann G (2018) Single-laser polarization-controlled optical sampling system for THz-TDS. Opt Lett 436:1351–1354

    Article  Google Scholar 

  • Liewald C, Mastel S, Hesler J, Huber AJ, Hillenbrand R, Keilmann F (2018) All-electronic terahertz nanoscopy. Optica 5(2):159–163

    Article  Google Scholar 

  • Lisauskas A, Pfeiffer U, Öjefors E, Bolìvar PH, Glaab D, Roskos HG (2009) Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J Appl Phys 105. https://doi.org/10.1063/1.3140611

  • Luukanen A, Grönberg L, Helistö P, Penttilä JS, Seppä H, Sipola H, Dietlein CR, Grossman EN (2007) Passive Euro-American terahertz camera (PEAT-CAM): passive indoors THz imaging at video rates for security applications. Proc SPIE 6548. https://doi.org/10.1117/12.719778

  • Martin CA, Lovberg JA, Dean WH, Ibrahim E (2007) High resolution passive millimeter-wave security screening using few amplifiers. Proc SPIE 6548. https://doi.org/10.1117/12.718950

  • May T, Heinz E, Peiselt K, Zieger G, Born D, Zakosarenko V, Brömel A, Anders S, Meyer H-G (2013) Next generation of a sub-millimetre wave security camera utilising superconducting detectors. IOP Publ J Instrum 8. https://doi.org/10.1088/1748-0221/8/01/P01014

  • Mittleman D (ed) (2003) Sensing with terahertz radiation. Springer, Berlin/Heidelberg

    Google Scholar 

  • Naftaly M (ed) (2015) Terahertz metrology. Artech House Publishers, Boston/London

    Google Scholar 

  • Nagatsuma T, Ducournau G, Renaud CC (2016) Advances in terahertz communications accelerated by photonics. Nat Photonics 10:371–379. https://doi.org/10.1038/nphoton.2016.65

    Article  Google Scholar 

  • Öjefors E, Lisauskas A, Glaab D, Roskos HG, Pfeiffer UR (2009) Terahertz imaging detectors in CMOS technology. J Infrared Millimeter Terahertz Waves 30:1269–1280. https://doi.org/10.1007/s10762-009-9569-4

    Article  Google Scholar 

  • Ortolani M, Lee JS, Schade U, Hübers H-W (2008) Surface roughness effects on the terahertz reflectance of pure explosive materials. Appl Phys Lett 93:081906

    Article  Google Scholar 

  • Ospald F, Zouathi W, Beigang R, Matheis C, Jonuscheit J, Recur B, Guillet J-P, Mounaix P, Vleugels W, Bosom PV (2014) Aeronautics composite material inspection with a terahertz time-domain spectroscopy system. Opt Eng SPIE 533:031208

    Google Scholar 

  • Pfeiffer T, Weber S, Klier J, Bachtler S, Molter D, Jonuscheit J, von Freymann G (2018) Terahertz thickness determination with interferometric vibration correction for industrial applications. Opt Express 2610:12558–12568. https://doi.org/10.1364/OE.26.012558

    Article  Google Scholar 

  • Reid CB, Pickwell-MacPherson E, Laufer JG, Gibson AP, Hebden JC, Wallace VP (2010) Accuracy and resolution of THz reflection spectroscopy for medical imaging. IOP Publ 5516:4825–4838

    Google Scholar 

  • Shen YC, Lo T, Taday PF, Cole BF, Tribe WR, Kemp MC (2005) Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl Phys Lett 86:241116. https://doi.org/10.1063/1.1946192

    Article  Google Scholar 

  • Sibik J, Zeitler JA (2016) Direct measurement of molecular mobility and crystallization of amorphous pharmaceuticals using terahertz spectroscopy. Adv Drug Deliv Rev 100:147–157

    Article  Google Scholar 

  • Skolnik M (2008) Radar handbook, 3rd edn. McGraw-Hill Education, New York

    Google Scholar 

  • Stoik CD, Bohn MJ, Blackshire JL (2008) Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Opt Express 162:17039–17051

    Article  Google Scholar 

  • Tasseva J, Bartolini P, Tascin A, Striova J (2017) Thin layered drawing media probed by THz time-domain spectroscopy. Analyst 142:42–47. https://doi.org/10.1039/C6AN02113A

    Article  Google Scholar 

  • Tessmann A, Leuther A, Massler H, Hurm V, Kuri M, Zink M, Riessle M, Stulz HP, Schlechtweg M, Ambacher O (2014) A 600 GHz low-noise amplifier module. Int Microw Symp. https://doi.org/10.1109/MWSYM.2014.6848456

  • Theuer M, Harsha SS, Molter D, Torosyan G, Beigang R (2011) Terahertz time-domain spectroscopy of gases, liquids, and solids. ChemPhysChem 12:2695–2705. https://doi.org/10.1002/cphc.20110158

    Article  Google Scholar 

  • Wallace VP, MacPherson E, Zeitler JA, Reid C (2008) Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation. J Opt Soc Am A 2512:3120–3133

    Article  Google Scholar 

  • Wilk R, Hochrein T, Koch M, Mei M, Holzwarth R (2011) OSCAT: novel technique for time-resolved experiments without moveable optical delay lines. J Infrared Millimeter Terahertz Waves 325:596–602

    Article  Google Scholar 

  • Yasuda Y, Yasui T, Araki T, Abraham E (2006) Real-time two-dimensional terahertz tomography of moving objects. Opt Commun 267:128–126

    Article  Google Scholar 

  • Yasui T, Yasuda T, Sawanaka K, Araki T (2005) Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film. Appl Opt 4432:6849–6856

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Jonuscheit .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jonuscheit, J. (2018). Terahertz Techniques in NDE. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Non-Destructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-30050-4_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30050-4_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30050-4

  • Online ISBN: 978-3-319-30050-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Terahertz Techniques in NDE
    Published:
    28 November 2018

    DOI: https://doi.org/10.1007/978-3-319-30050-4_35-2

  2. Original

    Terahertz Techniques in NDE
    Published:
    13 August 2018

    DOI: https://doi.org/10.1007/978-3-319-30050-4_35-1