Skip to main content

The Study of Thin Films by Electrochemical Impedance Spectroscopy

  • Chapter
  • First Online:
Nanostructures and Thin Films for Multifunctional Applications

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The capabilities and advantages of electrochemical impedance spectroscopy (EIS) as a useful and non-destructive technique are discussed. EIS provides the time dependent quantitative information about the electrode processes. The description of EIS is given in comprehensive way beginning from the theoretical basics of EIS and data interpretation in the frames of various equivalent electric circuits. The practical applications of EIS are described for the following thin film types: (i) cathodic metals/alloys films deposition; (ii) anodization of metals and characterization of oxide films and its growth by EIS including information provided by Mott-Schottky plots; (iii) underpotential deposition of metals; (iv) characterization of organic films onto metals; (v) application in development of biosensors and biofuel cells. The original data of EIS on cathodic electrodeposition of Co and Co-W are provided and reduction mechanisms involving adsorbed intermediates are discussed. The advantages of EIS in the oxide films characterization and their electrochemical properties are shown. EIS can be successfully applied for the characterization of biosensing surfaces and/or in evaluation of bioanalytical signals generated by biosensors. The glucose oxidase (GOx) based biosensor could be successfully analyzed by merged scanning electrochemical microscopy (SECM) and EIS techniques. Such combining study by SECM and EIS could be very attractive in order to evaluate the biofuel cell efficiency and in the modeling of biosensor action, because it is unavailable to obtain by other convenient electrochemical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Sluyters-Rehbah, Impedances of electrochemical systems: terminology, nomenclature and representation. Part 1. Cells with metal electrodes and liquid solutions. Pure Appl. Chem. 66(9), 1831–1891 (1994)

    Google Scholar 

  2. A.J. Bard, L.R. Faulkner, Electrochemical methods. Fundamentals and Applications (Wiley, New York, 2001), 829 pp

    Google Scholar 

  3. E. Barsoukov, J.R. Macdonald (ed.), Impedance Spectroscopy Theory, Experiment, and Applications (Wiley, New York, 2005), 595 pp

    Google Scholar 

  4. M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy (Wiley, New York, 2008), 523 pp

    Google Scholar 

  5. A. Lasia, in Electrochemical Impedance Spectroscopy and its Applications, ed. by B.E. Conway, J.O’M. Bockris, R.E. White, Modern Aspects of Electrochemistry, vol. 32 (Kluwer Academic Publishers, New York), pp. 143–248

    Google Scholar 

  6. A. Lasia, Electrochemical Impedance Spectroscopy and its Applications (Springer, New York, 2014), 367 pp

    Google Scholar 

  7. D. Landoldt, Corrosion and Surface Chemistry of Metals (EPFL Press, Lausanne, 2007), 622 pp

    Google Scholar 

  8. J.O’M Bockris, A.K.N. Reddy, M. Gamboa-Aldeco, Modern Electrochemistry, vol. 24. Fundamentals of Electrodics (Kluwer Academic Publishers, New York, 2002)

    Google Scholar 

  9. N. Tsyntsaru, H. Cesiulis, M. Donten, J. Sorte, E. Pellicer, E.J. Podlaha-Murphy, Modern trends in tungsten alloys electrodeposition with iron group metals. Surf. Eng. Appl. Electrochem. 48(6), 491–520 (2012)

    Article  Google Scholar 

  10. S.S. Belevskii, H. Cesiulis, N. Tsyntsaru, A.I. Dikusar, The role of mass transfer in the formation of the composition and structure of CoW coatings electrodeposited from citrate solutions. Surf. Eng. Appl. Electrochem. 46(6), 570–578 (2010)

    Google Scholar 

  11. Y. Liu, W. Wangz, Investigation on the Cu(II) and Co(II) electrochemical reduction process in citrate solution by CV and EIS. J. Electrochem. Soc. 159(6), D375–D381 (2012)

    Google Scholar 

  12. T. Pajkossy, Th Wandlowski, D.M. Kolb, Impedance aspects of the anion adsorption on gold single crystal electrodes. J. Electroanal. Chem. 414, 209–220 (1996)

    Google Scholar 

  13. J.R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems (Wiley, New York, 1987)

    Google Scholar 

  14. C. Cachet, B. Saidani, R. Wiart, A model for zinc deposition in alkaline electrolytes: inhibition layer and activation mechanism. Electrochim. Acta 34, 1249 (1989)

    Article  Google Scholar 

  15. C. Cachet, B. Saidani, R. Wiart, The kinetics of zinc deposition at low overpotentials in alkaline electrolytes. Electrochim. Acta 33, 405 (1988)

    Article  Google Scholar 

  16. C. Cachet, B. Saidani, R. Wiart, The behavior of zinc electrode in alkaline electrolytes I. A kinetic analysis of cathodic deposition. J. Electrochem. Soc. 138, 678 (1991)

    Article  Google Scholar 

  17. C. Cachet, Z. Chami, R. Wiart, The behavior of zinc electrode in alkaline electrolytes II. A kinetic analysis of anodic dissolution. J. Electrochem. Soc. 139(3), 644–654 (1991)

    Article  Google Scholar 

  18. T. Chengyu, C. Hang, H. Wei, L. Yu, Z. Ziqiao, Influence of Nano-Al2O3 particles on nickel electrocrystallization at initial stage. Rare Metal Mat. Eng. 39, 10–16 (2010)

    Article  Google Scholar 

  19. C. Cachet, C. Gabrielli, F. Huet, M. Keddam, R. Wiart, Electrochim. Acta 28, 899 (1983)

    Article  Google Scholar 

  20. I. Danaee, Theoretical and experimental studies of layer by layer nucleation and growth of palladium on stainless steel Chemija. 24(2), 128–136 (2013)

    Google Scholar 

  21. E.M. Garcia, T. Matencio, R.Z. Domingues, L.M. Garcia, J.A. Figueiredo dos Santos, N. Ribeiro, H.A. Tarôco, V. F.C. Lins, Study of cobalt electrodeposition onto stainless steel using electrochemical impedance spectroscopy (IES) J. Phys. Sci. Appl. 2(10), 409–413 (2012)

    Google Scholar 

  22. E. Lassner, W.D. Schubert, Tungsten—Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Springer, New York, 1999), 422 pp

    Google Scholar 

  23. M. Schwartz, N.V. Myung, K. Nobe, Electrodeposition of iron group-rare earth alloys from aqueous media. J. Electrochem. Soc. 151, C468–C477 (2004)

    Article  Google Scholar 

  24. H. Cesiulis, A. Baltutiene, M. Donten, M.L. Donten, Z. Stojek, Increase in rate of electrodeposition and in Ni(II) concentration in the bath as a way to control grain size of amorphous/nanocrystalline Ni-W alloys. J. Solid State Electrochem. 6, 237–244 (2002)

    Article  Google Scholar 

  25. H. Cesiulis, E.J. Podlaha-Murphy, Electrolyte considerations of electrodeposited Ni-W alloys for microdevice fabrication. Mater. Sci. (Medziagotyra) 9, 324–327 (2003)

    Google Scholar 

  26. H. Cesiulis, M. Donten, M.L. Donten, Z. Stojek, Electrodeposition of Ni-W Ni-Mo and Ni-Mo-W alloys from pyrophosphate baths. Mater. Sci. (Medziagotyra) 7, 237–241 (2001)

    Google Scholar 

  27. P. Andricacos, S.H. Boettcher, S.G. Malhotra, M. Paunovic, C. Ransom, Structure comprising a barrier layer of a tungsten alloy comprising cobalt and/or nickel. U.S. Patent Application Publication 6 pp. US 2004108136 A1 20040610 (2004)

    Google Scholar 

  28. M. Svensson, U. Wahlstrom, G. Holmbom, Compositionally modulated cobalt–tungsten alloys deposited from a single ammoniacal electrolyte. Surf. Coat. Technol. 105, 218–223 (1998)

    Article  Google Scholar 

  29. G.Y. Wei, J.W. Lou, H.L. Ge, Y.D. Yu, L. Jiang, L.X. Sun, Co–W films prepared from electroplating baths with different complexing agents. Surf. Eng. 28, 412–417 (2012)

    Article  Google Scholar 

  30. D.P. Weston, S.J. Harris, P.H. Shipway, N.J. Weston, G.N. Yap, Establishing relationships between bath chemistry, electrodeposition and microstructure of Co-W alloy coatings produced from a gluconate bath. Electrochim. Acta 55, 5695–5708 (2010)

    Article  Google Scholar 

  31. D.P. Weston, S.J. Haris, H. Capel, N. Ahmed, P.H. Shipway, J.M. Yellup, Nanostructured Co-W coatings produced by electrodeposition to replace hard Cr on aerospace components. Trans. Inst. Metal Finish. 88, 47–56 (2010)

    Article  Google Scholar 

  32. A.I. Shul’man, S.S. Belevskii, S.P. Yushchenko, A.I. Dikusar, Role of complexation in forming composition of Co-W coatings electrodeposited from gluconate electrolyte. Surf. Eng. Appl. Electrochem. 50(1), 9–17 (2014)

    Google Scholar 

  33. S.S. Belevskii, S.P. Yushchenko, A.I. Dikusar, Anomalous electrodeposition of Co-W coatings from a citrate electrolyte due to the formation of multinuclear heterometallic complexes in the solution. Surf. Eng. Appl. Electrochem. 48, 97–98 (2012)

    Article  Google Scholar 

  34. J.S. Santos, F. Trivinho-Strixino, E.C. Pereira, Investigation of Co(OH)2 formation during cobalt electrodeposition using a chemometric procedure. Surf. Coat. Technol. 205, 2585–2589 (2010)

    Article  Google Scholar 

  35. P. Vermeiren, R. Leysen, H. Vandenborre, Study of hydrogen evolving reaction in alkaline medium at nickel and cobalt based electrocatalysts. Electrochim. Acta 30, 1253 (1985)

    Article  Google Scholar 

  36. D.R. Gabe, The role of hydrogen in metal electrodeposition processes. J. Appl. Electrochem. 27, 908 (1997)

    Article  Google Scholar 

  37. J.T. Matsushima, F. Trivinho-Strixino, E.C. Pereira, Investigation of cobalt deposition using the electrochemical quartz crystal microbalance Electrochim. Acta 51 (2006)

    Google Scholar 

  38. J.S. Santos, R. Matos, F. Trivinho-Strixino, E.C. Pereira, Effect of temperature on Co electrodeposition in the presence of boric acid Electrochim. Acta 53, 644 (2007)

    Google Scholar 

  39. W.C. Grande, J.B. Talbot, Electrodeposition of thin films of nickel-iron. 1. Experimental. J. Electrochem. Soc. 140(3), 669–674 (1993)

    Article  Google Scholar 

  40. W.C. Grande, J.B. Talbot, Electrodeposition of thin films of nickel-iron. 2. Modelling. J. Electrochem. Soc. 140(3), 675–681 (1993)

    Article  Google Scholar 

  41. A. Budreika, The study of the electrodeposition of Ni, Co and their alloys with tungsten and molybdenum. Doctoral dissertation, 2010, Vilnius

    Google Scholar 

  42. Yan Liu, Wei Wang, Investigation on the Cu(II) and Co(II) electrochemical reduction process in citrate solution by CV and EIS. J. Electrochem. Soc. 159(6), D375–D381 (2012)

    Article  Google Scholar 

  43. H. Cesiulis, G. Baltrunas, The study of surface passivity and blocking by the electrochemical technique. Physicochem. Mech. Mater. 5, 11–17 (2006)

    Google Scholar 

  44. M.I. Jeffrey, W.L. Choo, P.L. Breuer, The effect of additives and impurities on the cobalt electrowinning process. Miner. Eng. 13(12), 1231–1241 (2000)

    Article  Google Scholar 

  45. S.S. Belevskii, S.P. Yushchenko, A.I. Dikusar, Electrodeposition of nanocrystalline Co–W coatings from citrate electrolytes under controlled hydrodynamic conditions: Part 1. Co electrodeposition. Surf. Eng. Appl. Electrochem. 45(6), 446–454 (2009)

    Article  Google Scholar 

  46. S.S. Belevskii, N.I. Tsyntsaru, A.I. Dikusar, Electrodeposition of nanocrystalline Co–W coatings from citrate electrolytes under controlled hydrodynamic conditions: part 2. The electrodeposition rate and composition of the coatings. Surf. Eng. Appl. Electrochem. 46(2), 91–99 (2010)

    Article  Google Scholar 

  47. N. Tsyntsaru, H. Cesiulis, E. Pellicer, J.-P. Celis, J. Sort, Structural, magnetic, and mechanical properties of electrodepositedcobalt–tungsten alloys: intrinsic and extrinsic interdependencies. Electrochim. Acta 104, 94–103 (2013)

    Article  Google Scholar 

  48. S.A. Silkin, S.S. Belevskii, A.S. Gradinar, V.I. Petrenko, I.V. Yakovets, N.I. Tsyntsaru, A.I. Dikusar, Electrodeposition of nanocrystalline Co–W coatings from citrate electrolytes under controlled hydrodynamic conditions: part 3. The micro_ and macrodistribution of the deposition rates, the structure and the mechanical properties. Surf. Eng. Appl. Electrochem. 46(3), 206–214 (2010)

    Article  Google Scholar 

  49. L.M. Hagelsieb, Anodic aluminum oxide processing, characterization and application to DNA hybridization electrical detection. PhD. thesis, Universite Catholique de Louvain, Louvain-La-Neuve, Belgique (2007)

    Google Scholar 

  50. C.X. Jiang, J.P. Tu, S.Y. Guo, M.F. Fu, X.B. Zhao, Friction properties of oil-infiltrated porous AAO film on an aluminium substrate. Acta Metallurgica Sinica (English Letters) 18, 249–253 (2005)

    Google Scholar 

  51. W. Lee, The anodization of aluminium for nanotechnology applications. JOM 62, 57–63 (2010)

    Article  Google Scholar 

  52. J. Choi, Fabrication of monodomain porous alumina using nanoimprint lithography and its applications. PhD. thesis, Martin-Luther-Universitat Halle, Wittenberg, Germany (2004)

    Google Scholar 

  53. I.U. Khan, P. John, S.T. Sheikh, N. Gulzar, A.U. Rehman, Anodizing of aluminum with improved corrosion properties. J. Chem. Soc. Pak. 32, 46–51 (2010)

    Google Scholar 

  54. T.D. Burleigh, P. Schmuki, S. Virtanen, Properties of the nanoporous anodic oxide electrochemically grown on steel in hot 50 % NaOH. J. Electrochem. Soc. 156(1), C45–C53 (2009)

    Article  Google Scholar 

  55. J.J. Suay, E. Gimenez, T. Rodrıguez, K. Habbib, J.J. Saura, Characterization of anodized and sealed aluminium by EIS. Corros. Sci. 45, 611–624 (2003)

    Article  Google Scholar 

  56. M.R. Kalantary, D.R. Gabe, D.H. Ross, A model for the mechanism of nickel fluoride cold sealing of anodized aluminium. J. Appl. Electrochem. 22(3), 268–276 (1992)

    Article  Google Scholar 

  57. J.A. Gonzalez, S. Feliu, J.A. Bautista, E. Otero, Changes in cold sealed aluminum oxide films during ageing. J. Appl. Electrochem. 29, 843–852 (1999)

    Article  Google Scholar 

  58. V López, E. Otero, A. Bautista, E. Escudero, J.A. González, Changes in the morphology of porous anodic films formed on aluminium in natural and artificial ageing. Rev Metal Madrid Vol Extr, 104–109 (2003)

    Google Scholar 

  59. F. Mansfeld, M.W. Kendig, Spectroscopy as quality control and corrosion test for anodized aluminum alloys. Corrosion 41, 490 (1985)

    Article  Google Scholar 

  60. F. Mansfeld, M.W. Kendig, W.J. Lorenz, Corrosion inhibition in neutral, aerated media. J. Electrochem. Soc. 132, 290 (1985)

    Article  Google Scholar 

  61. J. Hizing, K. Juettner, W.J. Lorenz, W. Paatsch, AC-impedance measurements on porous aluminium oxide films. Corros. Sci. 24, 945 (1984)

    Article  Google Scholar 

  62. T.P. Hoar, G.C. Wood, The sealing of porous anodic oxide films on aluminium. Electrochim. Acta 7, 333 (1962)

    Article  Google Scholar 

  63. K. Juettner, W.J. Lorenz, W. Paatsch, The role of surface inhomogeneities in corrosion processes-electrochemical impedance spectroscopy (EIS) on different aluminium oxide films. Corros. Sci. 29, 279–288 (1989)

    Article  Google Scholar 

  64. F. Mansfeld, Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection. Electrochim. Acta 35, 1533 (1990)

    Article  Google Scholar 

  65. J. Pan, D. Thierry, C. Leygraf, Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim. Acta 41(7–8), 1143 (1996)

    Article  Google Scholar 

  66. J.R. Birch, T.D. Burleigh, Oxides formed on titanum by polishing, etching, anodzng, or thermal oxidizng. Corrosion 56(12), 1233 (2000)

    Article  Google Scholar 

  67. M. Aziz-Kerrzo, K.G. Conroy, A.M. Fenelon, S.T. Farrell, C.B. Breslin, Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials 22, 1531 (2001)

    Article  Google Scholar 

  68. S. Piazza, G. Lo, Biundo, M.C. Romano, C. Sunseri, F. Di Quarto, In situ characterization of passive films on al-ti alloy by photocurrent and impedance spectroscopyfn1. Corros. Sci. 40(7), 1087 (1998)

    Article  Google Scholar 

  69. J.R. Macdonald, Impedance Spectroscopy (Wiley, New York, 1987)

    Google Scholar 

  70. M.J. Esplandiu, E.M. Patrito, V.A. Macagno, Characterization of hafnium anodic oxide films: an AC impedance investigation. Electrochim. Acta 40(7), 809 (1995)

    Article  Google Scholar 

  71. M.E.P. Souza, M. Ballester, C.M.A. Freire, EIS characterisation of Ti anodic oxide porous films formed using modulated potential. Surf. Coat. Technol. 201, 7775–7780 (2007)

    Article  Google Scholar 

  72. J.M. Macak, L.V. Taveira, H. Tsuchiya, K. Sirotna, J. Macak, P. Schmuki, Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization. J. Electroceram. 16, 29–34 (2006)

    Article  Google Scholar 

  73. N.K. Shrestha, J.M. Macak, F. Schmidt-Stein, R. Hahn, C.T. Mierke, B. Fabry, P. Schmuki, Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angew. Chem. 120, 1–5 (2008)

    Article  Google Scholar 

  74. H. Cesiulis, T. Maliar, N. Tsyntsaru, F. Wenger, P. Ponthiaux, E. Podlaha, Anodic titanium oxide films: photoelectrochemical and tribocorrosion behavior. J. Nanoelectron. Optoelectron. 9, 1–6 (2014)

    Article  Google Scholar 

  75. Balakrishnan Munirathinam, Lakshman Neelakantan, Titania nanotubes from weak organic acid electrolyte: Fabrication, characterization and oxide film properties. Mater. Sci. Eng. C 49, 567–578 (2015)

    Article  Google Scholar 

  76. A.W. Brace, The Technology of Anodizing Aluminium (Tecnicopy Ltd., Stonenhouse, Gloucesterhire, Great Britian, 1979), pp. 1–19

    Google Scholar 

  77. H. Bai, F. Wang, Protective properties of high temperature oxide films on Ni-based superalloys in 3.5 % NaCl solution. J. Mater. Sci. Technol. 23(4) (2007)

    Google Scholar 

  78. P. Schmuki, H. Bohni, Semiconductive properties of passive films and susceptibility to localized corrosion. Werkstoffe und Korrosion Mater. Corros. 42(5), 203–207 (1991)

    Google Scholar 

  79. N.E. Hakiki, S. Boudin, B. Rondot, M. Da Cunha, Belo. The electronic structure of passive films formed on stainless steels. Corros. Sci. 37(11), 1809–1822 (1995)

    Article  Google Scholar 

  80. A.S. Bondarenko, G.A. Ragoisha. Variable Mott-Schottky plots acquisition by potentiodynamic electrochemical impedance spectroscopy. J. Solid State Electrochem. 9(12), 845–849 (2005)

    Google Scholar 

  81. K. Gelderman, L. Lee, S.W. Donne, Flat-band potential of a semiconductor: using the Mott-Schottky equation. J. Chem. Educ. 84(7), 685–688 (2007)

    Article  Google Scholar 

  82. D. Li, D. Chen, J. Wang, H. Chen, Chemical composition and Mott-Schottky analysis of passive film formed on G3 alloy in bicarbonate/karbonate buffer solution. Acta Metall. Sin. (Engl. Lett.). 23(6), 461–472 (2010)

    Google Scholar 

  83. E. Sikora, J. Sikora, D.D. Macdonald, A new method for estimating the diffusivities of vacancies in passive films. Electrochim. Acta 41(6), 783–789 (1996)

    Article  Google Scholar 

  84. Z. Jiang, X. Dai, H. Middleton, Investigation on passivity of titanium under steady-state conditions in acidic solutions. Mater. Chem. Phys. 126(3), 859–865 (2011)

    Article  Google Scholar 

  85. M. Tomkiewicz, Impedance spectroscopy of rectifying semiconductor-electrolyte interfaces. Electrochim. Acta 35(10), 1631–1635 (1990)

    Article  Google Scholar 

  86. B.W. Gregory, D.W. Suggs, J.L. Stickney, Conditions for the deposition of CdTe by electrochemical atomic layer epitaxy. J. Electrochem. Soc. 138, 1279–1284 (1991)

    Article  Google Scholar 

  87. F. Forni, M. Innocenti, G. Pezzatini, M.L. Foresti, Electrochemical aspects of CdTe growth on the face (111) of silver by ECALE. Electrochim. Acta 45, 3225–3231 (2000)

    Article  Google Scholar 

  88. A.S. Bondarenko, G.A. Ragoisha, N.P. Osipovich, E.A. Streltsov, Multiparametric electrochemical characterisation of Te-Cu-Pb atomic three-layer structure deposition on polycrystalline gold. Electrochem. Commun. 8, 921–926 (2006)

    Article  Google Scholar 

  89. G.A. Ragoisha, A.S. Bondarenko, N.P. Osipovich, S.M. Rabchynski, E.A. Streltsov, Multiparametric characterisation of metal-chalcogen atomic multilayer assembly by potentiodynamic electrochemical impedance spectroscopy. Electrochim. Acta 53, 3879–3888 (2008)

    Article  Google Scholar 

  90. I. Sisman, U. Demir, Electrochemical growth and characterization of size-quantized CdTe thin films grown by underpotential deposition. J. Electroanal. Chem. 651, 222–227 (2011)

    Article  Google Scholar 

  91. J. Stickney, in Encyclopedia of Applied Electrochemistry, ed. by G. Kreysa, R.F. Savinell, K. Ota (Springer, New York, 2014), pp. 1447–1453

    Google Scholar 

  92. M. Bouroushian, Electrochemistry of Metal Chalcogenides (Springer, Heidelberg, 2010)

    Google Scholar 

  93. D.M. Kolb, M. Przasnysky, H. Gerischer, Underpotential deposition of metals and work function differences. J. Electroanal. Chem. 54, 25–38 (1974)

    Google Scholar 

  94. E. Budevski, G. Staikov, W.J. Lorenz, Electrochemical Phase Formation and Growth (VCH, Weinheim, 1996)

    Book  Google Scholar 

  95. P.V. Chulkin, Y.M. Aniskevich, E.A. Streltsov, G.A. Ragoisha, Underpotential shift in electrodeposition of metal adlayer on tellurium and the free energy of metal telluride formation. J Solid State Electrochem. 19, 2511–2516 (2015). doi:10.1007/s10008-015-2831-x

    Google Scholar 

  96. G.A. Ragoisha, Potentiodynamic electrochemical impedance spectroscopy for underpotential deposition processes. Electroanalysis 27, 855–863 (2015)

    Google Scholar 

  97. G.A. Ragoisha, A.S. Bondarenko, Potentiodynamic electrochemical impedance spectroscopy. Copper underpotential deposition on gold. Electrochem. Commun. 5, 392–395 (2003)

    Google Scholar 

  98. G.A. Ragoisha, A.S. Bondarenko, Potentiodynamic electrochemical impedance spectroscopy. Electrochim. Acta 50, 1553–1563 (2005)

    Google Scholar 

  99. J.E. Garland, K.A. Assiongbon, C.M. Pettit, S.B. Emery, D. Roy, Kinetic analysis of electrosorption using fast fourier transform electrochemical impedance spectroscopy: underpotential deposition of Bi3+ in the presence of coadsorbing ClO4- on Gold. Electrochim. Acta 47, 4113–4124 (2002)

    Google Scholar 

  100. S. Morin, H. Dumont, B.E. Conway, Evaluation of the effect of 2-Dimensional geometry of Pt single-crystal faces on the kinetics of UPD of H using impedance spectroscopy. J. Electroanal. Chem. 412, 39–52 (1992)

    Google Scholar 

  101. G.A. Ragoisha, A.S. Bondarenko, N.P. Osipovich, E.A. Streltsov, Potentiodynamic electrochemical impedance spectroscopy of lead upd on polycrystalline gold and on selenium atomic underlayer. Electrochem. Commun. 7, 631–636 (2005)

    Article  Google Scholar 

  102. L. Beaunier, I. Epelboin, J.C. Lestrade, H. Takenouti, Electrochemical and scanning microscope study of pained Fe. Surf. Technol. 4, 237 (1976)

    Article  Google Scholar 

  103. F. Mansfield, M. Kendig, S. Tsai, Evaluation of corrosion behavior of coated metals with AC impedance measurements. Corrosion 38(7), 478–485 (1982)

    Article  Google Scholar 

  104. A. Ramanavicius, A. Finkelsteinas, H. Cesiulis, A. Ramanaviciene, Electrochemical impedance spectroscopy of polypyrolle based immunosensor. Bioelectrochemistry 79(1), 11–16 (2010)

    Article  Google Scholar 

  105. P.L. Bonora, F. Deflorian, L. Fedrizzi. Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion. Electrochimica Acta 41(7–8), 1073–1082 (1996)

    Google Scholar 

  106. J. Padgurskas, R. Rukuiza, H. Cesiulis, A. Amulevicius, A. Daugvila, R. Davidonis, C. Sipavicius, The properties and physicochemical interactions in the system iron-fluoroligomer. Physicochem. Mech. Mater. 45(5), 81–90 (2009)

    Google Scholar 

  107. J. Padgurskas, R. Rukuiza, A. Amulevicius, C. Sipavicius, K. Mazeika, R. Davidonis, A. Daugvila, H. Cesiulis, Influence of fluor-oligomers on the structural and tribological properties of steel surface at the rolling friction. Ind. Lubr. Tribol 60(5), 222–227 (2008)

    Article  Google Scholar 

  108. V.F. Lvovich, M.F. Smiechowski, Non-linear impedance analysis of industrial lubricants. Electrochim. Acta 53(25), 7375–7385 (2008)

    Article  Google Scholar 

  109. D. Hallam, D. Thurrowgood, V. Otieno-Alego, D. Creagh, An EIS Method for assessing thin oil films used in museums, in Proceedings of Metal 2004 National Museum of Australia Canberra ACT, 4–8 October 2004 ABN 70 592 297 967, pp. 388–399

    Google Scholar 

  110. L. Jianguo, G. Gaoping, Y. Chuanwei, EIS study of corrosion behaviour of organic coating/Dacromet composite systems. Electrochimica Acta 50(16–17), 3320–3332 (2005)

    Google Scholar 

  111. Y.J. Tan, S. Balley, B. Kinsella, An investigation of the formation and destruction of corrosion inhibitor films using electrochemical impedance spectroscopy (EIS). Corros. Sci. 38(9), 1545–1561 (1996)

    Article  Google Scholar 

  112. S. González, M.A. Gil, J.O. Hernández, V. Fox, R.M. Souto, Resistance to corrosion of galvanized steel covered with an epoxy-polyamide primer coating. Prog. Org. Coat. 41, 167–170 (2001)

    Article  Google Scholar 

  113. H. Cesiulis, N. Tsyntsaru, Non-destructive method for assessing thin oil films, in Proceedings of the International Conference BALTTRIB’2009 (2009), pp. 59–64

    Google Scholar 

  114. J.J. Santana, J.E. González, J. Morales, S. González, R.M. Souto, Evaluation of ecological organic paint coatings via electrochemical impedance spectroscopy. Int. J. Electrochem. Sci. 7, 6489–6500 (2012)

    Google Scholar 

  115. N. Hammouda, H. Chadli, G. Guillemot, K. Belmokre, The corrosion protection behaviour of zinc rich epoxy paint in 3 % NaCl solution advances in chemical. Eng. Sci. 1, 51–60 (2011)

    Google Scholar 

  116. B.M. Fernández-Pérez, J.A. González-Guzmán, S. González, R.M. Souto, Electrochemical impedance spectroscopy investigation of the corrosion resistance of a waterborne acrylic coating containing active electrochemical pigments for the protection of carbon steel. Int. J. Electrochem. Sci. 9, 2067–2079 (2014)

    Google Scholar 

  117. P.L. Bonora, F. Deflorian, L. Fedrizzi. Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion. Electrochimica Acta 41(7–8), 1073–1082 (1996)

    Google Scholar 

  118. H. Cesiulis, G. Baltrūnas, J. Padgurskas, The effect of FOLEOX thin films on the corrosion behaviour of Armco iron. Mater. Sci. (Medziagotyra) 8(4), 392–395 (2002)

    Google Scholar 

  119. G.W. Walter, A review of impedance plot methods used for corrosion performance analysis of painted metals. Corros. Sci. 26(9), 681–703 (1986)

    Article  Google Scholar 

  120. Y.J. Tom, S. Bailey, An investigation on the formation and destruction of corrosion inhibitor films using electrochemical noise analysis (ENA). Corros. Sci. 38(9), 1545–1561 (1996)

    Article  Google Scholar 

  121. A. Banu, O, Radovici, M. Marcu, T. Spataru, S. Jurcoane, Electrochemical synthesis and characterization of a polipyrrole/lipase composite film. Roum. Biotechnol. Lett. 13(1), 3551–3556 (2008)

    Google Scholar 

  122. I. Morkvenaite-Vilkonciene, P. Genys, A. Ramanaviciene, A. Ramanavicius, Scanning electrochemical impedance microscopy for investigation of glucose oxidase catalyzed reaction colloids and surfaces. B-Biointerfaces 126, 598–602 (2015)

    Google Scholar 

  123. I. Lapenaite, A. Ramanaviciene, A. Ramanavicius, Current trends in enzymatic determination of glycerol. Crit. Rev. Anal. Chem. 36, 13–25 (2006)

    Article  Google Scholar 

  124. A. Ramanavicius, A. Ramanaviciene, A. Malinauskas, Electrochemical sensors based on conducting polymer—polypyrrole (Review). Electrochim. Acta 51, 6025–6037 (2006)

    Article  Google Scholar 

  125. Y. Oztekin, A. Ramanaviciene, Z. Yazicigil, A.O. Solak, A. Ramanavicius, Direct electron transfer from glucose oxidase immobilized on polyphenanthroline modified-glassy carbon electrode. Biosens. Bioelectron. 26, 2541–2546 (2011)

    Article  Google Scholar 

  126. N. German, A. Ramanaviciene, A. Ramanavicius, Electrochemical deposition of gold nanoparticles on graphite rod for glucose biosensing. Sens. Actuators B: Chem. 203, 25–34 (2014)

    Article  Google Scholar 

  127. A. Ramanavicius, P. Genys, A. Ramanaviciene, Electrochemical impedance spectroscopy based evaluation of 1,10-Phenanthroline-5,6-dione and glucose oxidase modified graphite electrode. Electrochim. Acta 146, 659–665 (2014)

    Article  Google Scholar 

  128. A. Ramanavicius, P. Genys, Y. Oztekin, A. Ramanaviciene, Evaluation of the redox mediating properties of 1,10-Phenanthroline-5,6-dione for glucose oxidase modified graphite electrodes. J. Electrochem. Soc. 161, B31–B33 (2014)

    Article  Google Scholar 

  129. D.D. Macdonald, Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta 51, 1376–1388 (2006)

    Article  Google Scholar 

  130. R.K. Shervedani, A.H. Mehrjardi, N. Zamiri, A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry 69, 201–208 (2006)

    Article  Google Scholar 

  131. T. Hoshino, S. Sekiguchi, H. Muguruma, Amperometric biosensor based on multilayer containing carbon nanotube, plasma-polymerized film, electron transfer mediator phenothiazine, and glucose dehydrogenase. Bioelectrochemistry 84, 1–5 (2012)

    Article  Google Scholar 

  132. B. Kurtinaitiene, D. Ambrozaite, V. Laurinavicius, A. Ramanaviciene, A. Ramanavicius, Amperometric immunosensor for diagnosis of BLV infection. Biosens. Bioelectron. 23, 1547–1554 (2008)

    Article  Google Scholar 

  133. Y. Oztekin, A. Ramanaviciene, N. Ryskevic, Z. Yazicigil, Z. Ustundag, A.O. Solak, A. Ramanavicius, 1,10-Phenanthroline modified glassy carbon electrode for voltammetric determination of cadmium(II) ions. Sens. Actuators B: Chem. 157, 146–153 (2011)

    Article  Google Scholar 

  134. Y. Oztekin, Z. Yazicigil, A. Ramanaviciene, A. Ramanavicius, Polyphenol-modified glassy carbon electrodes for copper detection. Sens. Actuators B: Chem. 152, 37–48 (2011)

    Article  Google Scholar 

  135. Y. Oztekin, Z. Yazicigil, A. Ramanaviciene, A. Ramanavicius, Square wave voltammetry based determination of copper (II) ions by polyluteolin- and polykaempferol-modified electrodes. Talanta 85, 1020–1027 (2011)

    Article  Google Scholar 

  136. A. Ramanaviciene, A. Ramanavicius, Pulsed amperometric detection of DNA with an ssDNA/polypyrrole modified electrode. Anal. Bioanal. Chem. 379, 287–293 (2004)

    Article  Google Scholar 

  137. A. Ramanavicius, Y. Oztekin, A. Ramanaviciene Electrochemical Formation of Polypyrrole-based layer for immunosensor design. Sens. Actuators B: Chem. 197, 237–243 (2014)

    Google Scholar 

  138. V. Ratautaite, S.D. Janssens, K. Haenen, M. Nesládek, A. Ramanaviciene, I. Baleviciute, A. Ramanavicius, Molecularly imprinted polypyrrole based impedimentric sensor for theophylline determination. Electrochim. Acta 130, 361–367 (2014)

    Article  Google Scholar 

  139. V. Ratautaite, D. Plausinaitis, I. Baleviciute, L. Mikoliunaite, A. Ramanaviciene, A. Ramanavicius, Characterization of caffeine-imprinted polypyrrole by a quartz crystal microbalance and electrochemical impedance spectroscopy. Sens. Actuators B: Chem. 212, 63–71 (2015)

    Google Scholar 

  140. A. Ramanaviciene, A. Finkelsteinas, A. Ramanavicius, Basic electrochemistry meets nanotechnology: Electrochemical preparation of artificial receptors based on a nanostructured conducting polymer, polypyrrole. J. Chem. Educ. 83, 1212–1214 (2006)

    Article  Google Scholar 

  141. A. Ramanaviciene, A. Ramanavicius, Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins. Biosens. Bioelectron. 20, 1076–1082 (2004)

    Article  Google Scholar 

  142. V. Ratautaite, S.N. Topkaya, L. Mikoliunaite, M. Ozsoz, Y. Oztekin, A. Ramanaviciene, A. Ramanavicius, Molecularly imprinted polypyrrole for DNA determination. Electroanalysis 25, 1169–1177 (2013)

    Article  Google Scholar 

  143. A. Ramanaviciene, A. Ramanavicius, Application of polypyrrole for the creation of immunosensors. Crit. Rev. Anal. Chem. 32, 245–252 (2002)

    Article  Google Scholar 

  144. D. Plausinaitis, V. Ratautaite, L. Mikoliunaite, L. Sinkevicius, A. Ramanaviciene, A. Ramanavicius, Quartz crystal microbalance based evaluation of electrochemical formation of aggregated polypyrrole particle based layer. Langmuir 31(10), 3186–3193 (2015)

    Article  Google Scholar 

  145. A. Ramanaviciene, N. German, A. Kausaite-Minkstimiene, J. Voronovic, J. Kirlyte, A. Ramanavicius, Comparative study of surface plasmon resonance, electrochemical and electroassisted chemiluminescence methods based immunosensor for the determination of antibodies against human growth hormone. Biosens. Bioelectron. 36, 48–55 (2012)

    Article  Google Scholar 

  146. A.S. Bandarenka, K. Eckhard, A. Maljusch, W. Schuhmann, Localized electrochemical impedance spectroscopy: Visualization of spatial distributions of the key parameters describing solid/liquid interfaces. Anal. Chem. 85, 2443–2448 (2013)

    Article  Google Scholar 

  147. V. Kuznetsov, A. Maljusch, R.M. Souto, A.S. Bandarenka, W. Schuhmann, Characterization of localised corrosion processes using scanning electrochemical impedance microscopy. Electrochem. Commun. 44, 38–41 (2014)

    Article  Google Scholar 

  148. L. Philippe, G. Walter, S. Lyon, Investigating localized degradation of organic coatings comparison of electrochemical impedance spectroscopy with local electrochemical impedance spectroscopy. J. Electrochem. Soc. 150, B111–B119 (2003)

    Article  Google Scholar 

  149. K. Darowicki, M. Szociński, A. Zieliński, Assessment of organic coating degradation via local impedance imaging. Electrochim. Acta 55, 3741–3748 (2010)

    Article  Google Scholar 

  150. M. Szociński, K. Darowicki, K. Schaefer, Identification and localization of organic coating degradation onset by impedance imaging. Polym. Degrad. Stab. 95, 960–964 (2010)

    Article  Google Scholar 

  151. A. Ramanavicius, A. Kausaite-Minkstimiene, I. Morkvenaite-Vilkonciene, P. Genys, R. Mikhailova, T. Semashko, J. Voronovic, A. Ramanaviciene, Biofuel cell based on glucose oxidase from Penicillium funiculosum 46.1 and horseradish peroxidase. Chem. Eng. J. 264, 165–173 (2015)

    Article  Google Scholar 

  152. A. Ramanavicius, Y. Oztekin, A. Ramanaviciene, Electrochemical formation of polypyrrole-based layer for immunosensor design. Sens. Actuators B: Chem. 197, 237–243 (2014)

    Google Scholar 

  153. M.V. Mirkin, W. Nogala, J. Velmurugan, Y. Wang, Scanning electrochemical microscopy in the 21st century. Update 1: five years after. Phys. Chem. Chem. Phys. 13, 21196–21212 (2011)

    Article  Google Scholar 

  154. M. Ciobanu, D.E. Taylor, J.P. Wilburn, D.E. Cliffel, Glucose and lactate biosensors for scanning electrochemical microscopy imaging of single live cells. Anal. Chem. 80, 2717–2727 (2008)

    Article  Google Scholar 

  155. D.T. Pierce, P.R. Unwin, A.J. Bard, Scanning electrochemical microscopy. 17. Studies of enzyme-mediator kinetics for membrane- and surface-immobilized glucose oxidase. Anal. Chem. 64, 1795–1804 (1992)

    Article  Google Scholar 

  156. B.R. Horrocks, D. Schmidtke, A. Heller, A.J. Bard, Scanning electrochemical microscopy. 24. Enzyme ultramicroelectrodes for the measurement of hydrogen peroxide at surfaces. Anal. Chem. 65, 3605–3614 (1993)

    Article  Google Scholar 

  157. K. Eckhard, T. Erichsen, M. Stratmann, W. Schuhmann, Frequency-dependent alternating-current scanning electrochemical microscopy (4D AC-SECM) for local visualisation of corrosion sites. Chem. Eur. J. 14, 3968–3976 (2008)

    Article  Google Scholar 

  158. K. Eckhard, C. Kranz, H. Shin, B. Mizaikoff, W. Schuhmann, Frequency dependence of the electrochemical activity contrast in AC-scanning electrochemical microscopy and atomic force microscopy-AC-scanning electrochemical microscopy imaging. Anal. Chem. 79, 5435–5438 (2007)

    Article  Google Scholar 

  159. P.M. Diakowski, Z.F. Ding, Novel strategy for constant-distance imaging using alternating current scanning electrochemical microscopy. Electrochem. Commun. 9, 2617–2621 (2007)

    Article  Google Scholar 

  160. B. Ballesteros, A. Katemann, E.J. Schulte, M. Calvo, W. Koudelka-Hep, Schuhmann, Localised electrochemical impedance spectroscopy with high lateral resolution by means of alternating current scanning electrochemical microscopy. Electrochem. Commun. 4, 134–138 (2002)

    Article  Google Scholar 

  161. C. Gabrielli, M. Keddam, N. Portail, P. Rousseau, H. Takenouti, V. Vivier, Electrochemical impedance spectroscopy investigations of a microelectrode behavior in a thin-layer cell: experimental and theoretical studies. J. Phys. Chem. B 110, 20478–20485 (2006)

    Article  Google Scholar 

  162. C. Gabrielli, F. Huet, M. Keddam, P. Rousseau, V. Vivier, Scanning electrochemical microscopy imaging by means of high-frequency impedance measurements in feedback mode. J. Phys. Chem. B 108, 11620–11626 (2004)

    Article  Google Scholar 

  163. A.S. Baranski, P.M. Diakowski, Application of AC impedance techniques to scanning electrochemical microscopy. J. Solid State Electrochem. 8, 683–692 (2004)

    Google Scholar 

  164. K. Eckhard, H. Shin, B. Mizaikoff, W. Schuhmann, C. Kranz, Alternating current (AC) impedance imaging with combined atomic force scanning electrochemical microscopy (AFM-SECM). Electrochem. Commun. 9, 1311–1315 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from FP7 Oil&Sugar project (295202), from the Research Council of Lithuania (MIP-031/2014) and Moldavian national projects (15.817.02.05A), (14.819.02.16F). Also, A.Ramanavicius is grateful to LaMeTech program project No.VP1-3.1-SMM-08-K-01-004/KS-120000-1756 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Cesiulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cesiulis, H., Tsyntsaru, N., Ramanavicius, A., Ragoisha, G. (2016). The Study of Thin Films by Electrochemical Impedance Spectroscopy. In: Tiginyanu, I., Topala, P., Ursaki, V. (eds) Nanostructures and Thin Films for Multifunctional Applications. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30198-3_1

Download citation

Publish with us

Policies and ethics