Skip to main content

Genetic Overlap Between Depression and Cardiometabolic Disorders

  • Chapter
  • First Online:
Book cover Cardiovascular Diseases and Depression

Abstract

Depression and major cardiometabolic disorders (in this chapter, cardiometabolic disorders refer to the cardiovascular diseases, metabolic disorders, and associated risk factors) are highly heritable, i.e., they are caused by a combination of genetic and environmental factors. Moreover, there are genetic co-heritabilities (genetic correlations) in these disorders suggesting the influence of common genes and shared biological pathways between them. Several candidate gene studies performed so far have identified risk-associated genes for depression, cardiovascular, and/or metabolic diseases. Besides, meta-analysis of genome-wide association (meta-GWA) studies reported a number of single nucleotide polymorphisms (SNPs) and candidate genes for the cardiometabolic disorders. Compared to the cardiometabolic disorders, the meta-GWA studies of depression have had limited success due to the heterogeneity of the disorder and lack of statistical power (sample size) to detect the associations. The first successfully replicated meta-GWA study for depression was published in July 2015.

In this chapter, we present an appraisal and analysis of pleiotropic genes (pleiotropy occurs when a genetic region influences more than two phenotypes, disorders in this case) and shared biological pathways underlying the association of depression and the cardiometabolic diseases. These genes are shared between depression and (a) metabolic disorders (type 2 diabetes), (b) cardiovascular disorders (coronary artery diseases, hypertension), and (c) associated risk factors (blood pressure, obesity (body mass index), plasma lipid levels (high-density lipoprotein, low-density lipoprotein, triglycerides, total cholesterol), insulin and glucose-related traits (fasting glucose, fasting insulin, fasting proinsulin, insulin resistance-HOMA-IR, beta-cell function-HOMA-β, and glycated hemoglobin A1C- HbA1C).

Generally speaking, pleiotropic genes and shared biological mechanisms could explain part of the comorbidity between depression and cardiometabolic disorders. Genetic polymorphisms within the genes: MTHFR, CACNA1D, CACNB2, GNAS, ADRB1, NCAN, REST, FTO, POMC, BDNF, CREB, ITIH4, LEP, GSK3B, SLC18A1, TLR4, APOE, CRY2, HTR1A, ADRA2A, MTNR1B, and IGF1 are associated with both depression and cardiometabolic disorders. These genes belong to biologically relevant signaling pathways that are potentiality important in the relationship between depression and cardiometabolic diseases. The pathways include: corticotrophin-releasing hormone signaling, AMPK signaling, cAMP-mediated and G-protein-coupled receptor signaling, axonal guidance signaling, and serotonin and dopamine receptor signaling. A better understanding of these genes and related pathways will enhance knowledge as to why patients suffer from multiple diseases at a time and how multi-morbidities influence pharmacological treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya T, Acharya S, Tringali S et al (2013) Association of antidepressant and atypical antipsychotic use with cardiovascular events and mortality in a veteran population. Pharmacotherapy 33:1053–1061

    Article  CAS  PubMed  Google Scholar 

  • Afari N, Noonan C, Goldberg J et al (2010) Depression and obesity: do shared genes explain the relationship? Depress Anxiety 27:799–806

    Article  PubMed  PubMed Central  Google Scholar 

  • Almgren P, Lehtovirta M, Isomaa B et al (2011) Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 54:2811–2819

    Article  CAS  PubMed  Google Scholar 

  • Antypa N, Souery D, Tomasini M et al (2015) Clinical and genetic factors associated with suicide in mood disorder patients. Eur Arch Psychiatry Clin Neurosci 266(2):181–193

    Google Scholar 

  • Barnett K, Mercer SW, Norbury M et al (2012) Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet 380:37–43

    Article  PubMed  Google Scholar 

  • Baune BT, Hohoff C, Roehrs T et al (2008) Serotonin receptor 1A–1019C/G variant: impact on antidepressant pharmacoresponse in melancholic depression? Neurosci Lett 436:111–115

    Article  CAS  PubMed  Google Scholar 

  • Berndt SI, Gustafsson S, Mägi R et al (2013) Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet 45:501–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C et al (2009) A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet 41:89–94

    Article  CAS  PubMed  Google Scholar 

  • Brieler JA, Lustman PJ, Scherrer JF et al (2016) Antidepressant medication use and glycaemic control in co-morbid type 2 diabetes and depression. Fam Pract 33:30–36

    Article  PubMed  Google Scholar 

  • Calkin CV, Ruzickova M, Uher R et al (2015) Insulin resistance and outcome in bipolar disorder. Br J Psychiatry 206:52–57

    Article  PubMed  Google Scholar 

  • Celano CM, Huffman JC (2011) Depression and cardiac disease: a review. Cardiol Rev 19:130–142

    Article  PubMed  Google Scholar 

  • Chambers JC, Weihua Z, Zabaneh D et al (2009) Common genetic variation near melatonin receptor MTNR1B contributes to raised plasma glucose and increased risk of type 2 diabetes among Indian Asians and European Caucasians. Diabetes 58:2703–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang HS, Won ES, Lee HY et al (2015) The association of proopiomelanocortin polymorphisms with the risk of major depressive disorder and the response to antidepressants via interactions with stressful life events. J Neural Transm 122:59–68

    Article  CAS  PubMed  Google Scholar 

  • Chauvet-Gélinier JC, Trojak B, Vergès-Patois B et al (2013) Review on depression and coronary heart disease. Arch Cardiovasc Dis 106:103–110

    Article  PubMed  Google Scholar 

  • CONVERGE Consortium (2015) Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523:588

    Article  PubMed Central  CAS  Google Scholar 

  • Cordeiro ML, Gundersen CB, Umbach JA (2002) Lithium ions modulate the expression of VMAT2 in rat brain. Brain Res 953:189–194

    Article  CAS  PubMed  Google Scholar 

  • Cuffí ML, Artells R, Navarro A et al (2010) Regulation of α2-adrenoceptor gene expression by chronic lithium treatment in rat brain. Methods Find Exp Clin Pharmacol 32:721–725

    Article  PubMed  CAS  Google Scholar 

  • Dannlowski U, Kugel H, Grotegerd D et al (2015) NCAN cross-disorder risk variant is associated with limbic gray matter deficits in healthy subjects and major depression. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 40:2510–2516

    Article  CAS  Google Scholar 

  • Diniz BS, Talib LL, Joaquim HPG et al (2011) Platelet GSK3B activity in patients with late-life depression: marker of depressive episode severity and cognitive impairment? World J Biol Psychiatry Off J World Fed Soc Biol Psychiatry 12:216–222

    Article  Google Scholar 

  • Dupuis JJ, Langenberg C, Prokopenko I et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehret GB, Munroe PB et al (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478:103–109

    Google Scholar 

  • Eikelis N, Esler M, Barton D et al (2006) Reduced brain leptin in patients with major depressive disorder and in suicide victims. Mol Psychiatry 11:800–801

    Article  CAS  PubMed  Google Scholar 

  • El-Hage W, Vourc’h P, Gaillard P et al (2014) The BDNF Val66Met polymorphism is associated with escitalopram response in depressed patients. Psychopharmacology (Berl) 232:575–581

    Article  CAS  Google Scholar 

  • Eyre HA, Baune BT (2015) Anti-inflammatory intervention in depression. JAMA Psychiatry 72:511

    Article  PubMed  Google Scholar 

  • Fernandez AM, Torres-Alemán I (2012) The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 13:225–239

    Article  CAS  PubMed  Google Scholar 

  • Finseth PI, Sønderby IE, Djurovic S et al (2014) Association analysis between suicidal behaviour and candidate genes of bipolar disorder and schizophrenia. J Affect Disord 163:110–114

    Article  CAS  PubMed  Google Scholar 

  • Flint J, Kendler KS (2014) The genetics of major depression. Neuron 81:484–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gałecka E, Szemraj J, Florkowski A et al (2011) Single nucleotide polymorphisms and mRNA expression for melatonin MT2 receptor in depression. Psychiatry Res 189:472–474

    Article  PubMed  CAS  Google Scholar 

  • Gan Y, Gong Y, Tong X et al (2014) Depression and the risk of coronary heart disease: a meta-analysis of prospective cohort studies. BMC Psychiatry 14:7

    Article  Google Scholar 

  • Gaulton KJ, Ferreira T, Lee Y et al (2015) Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet 47:1415–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaus J, Vandeleur CL, Lasserre AM et al (2015) Aspirin and statin use and the subsequent development of depression in men and women: results from a longitudinal population-based study. J Affect Disord 182:126–131

    Article  CAS  PubMed  Google Scholar 

  • Golden SH, Lazo M, Carnethon M et al (2008) Examining a bidirectional association between depressive symptoms and diabetes. JAMA 299:2751–2759

    Article  PubMed  PubMed Central  Google Scholar 

  • Goswami DB, May WL, Stockmeier CA et al (2010) Transcriptional expression of serotonergic regulators in laser-captured microdissected dorsal raphe neurons of subjects with major depressive disorder: sex-specific differences. J Neurochem 112:397–409

    Article  CAS  PubMed  Google Scholar 

  • Haefner S, Baghai TC, Schule C et al (2008) Impact of gene-gender effects of adrenergic polymorphisms on hypothalamic-pituitary-adrenal axis activity in depressed patients. Neuropsychobiology 58:154–162

    Article  CAS  PubMed  Google Scholar 

  • Hara K, Fujita H, Johnson TA et al (2014) Genome-wide association study identifies three novel loci for type 2 diabetes. Hum Mol Genet 23:239–246

    Article  CAS  PubMed  Google Scholar 

  • Herbert J, Ban M, Brown GW et al (2012) Interaction between the BDNF gene Val/66/Met polymorphism and morning cortisol levels as a predictor of depression in adult women. Br J Psychiatry 201:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong W, Fan J, Yuan C et al (2014) Significantly decreased mRNA levels of BDNF and MEK1 genes in treatment-resistant depression. Neuroreport 25:753–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Xing H, Dong X et al (2015) Pioglitazone is an effective treatment for patients with post-stroke depression combined with type 2 diabetes mellitus. Exp Ther Med 10:1109–1114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huffman JC, Celano CM, Beach SR et al (2013) Depression and cardiac disease: epidemiology, mechanisms, and diagnosis. Cardiovasc Psychiatry Neurol 2013:1–14

    Article  CAS  Google Scholar 

  • Hung YY, Kang HY, Huang KW et al (2014) Association between toll-like receptors expression and major depressive disorder. Psychiatry Res 220:283–286

    Article  CAS  PubMed  Google Scholar 

  • Hwang JY, Sim X, Wu Y et al (2015) Genome-wide association meta-analysis identifies novel variants associated with fasting plasma glucose in East Asians. Diabetes 64:291–298

    Article  CAS  PubMed  Google Scholar 

  • Iwahashi K, Nishizawa D, Narita S et al (2014) Haplotype analysis of GSK-3β gene polymorphisms in bipolar disorder lithium responders and nonresponders. Clin Neuropharmacol 37:108–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeanneteau FD, Lambert WM, Ismaili N et al (2012) BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proc Natl Acad Sci U S A 109:1305–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M, Fukuda T, Wakeno M et al (2009) Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 150B:115–123

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Serretti A, Nonen S et al (2015) Genetic variants in combination with early partial improvement as a clinical utility predictor of treatment outcome in major depressive disorder: the result of two pooled RCTs. Transl Psychiatry 5:e513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly CB, Mcdonnell AP, Johnston TG et al (2004) The MTHFR C677T polymorphism is associated with depressive episodes in patients from Northern Ireland. J Psychopharmacol (Oxford, England) 18:567–571

    Article  CAS  Google Scholar 

  • Kemp DE, Gao K, Chan PK et al (2010) Medical comorbidity in bipolar disorder: relationship between illnesses of the endocrine/metabolic system and treatment outcome. Bipolar Disord 12:404–413

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim HK, Kim SJ, Lee YJ et al (2011a) Influence of the interaction between the serotonin 1A receptor C-1019G polymorphism and negative life stressors on the development of depression. Neuropsychobiology 64:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Go MJ, Hu C et al (2011b) Large-scale genome-wide association studies in east Asians identify new genetic loci influencing metabolic traits. Nat Genet 43:990–995

    Article  CAS  PubMed  Google Scholar 

  • Kishi T, Yoshimura R, Fukuo Y et al (2013) The serotonin 1A receptor gene confer susceptibility to mood disorders: results from an extended meta-analysis of patients with major depression and bipolar disorder. Eur Arch Psychiatry Clin Neurosci 263:105–118

    Article  PubMed  Google Scholar 

  • Klenke S, Siffert W (2011) SNPs in genes encoding G proteins in pharmacogenetics. Pharmacogenomics 12:633–654

    Article  CAS  PubMed  Google Scholar 

  • Kloiber S, Ripke S, Kohli MA et al (2013) Resistance to antidepressant treatment is associated with polymorphisms in the leptin gene, decreased leptin mRNA expression, and decreased leptin serum levels. Eur Neuropsychopharmacol 23:653–662

    Article  CAS  PubMed  Google Scholar 

  • Knoblauch H, Busjahn A, Munter S et al (1997) Heritability analysis of lipids and three gene loci in twins link the macrophage scavenger receptor to HDL cholesterol concentrations. Arterioscler Thromb Vasc Biol 17:2054–2060

    Article  CAS  PubMed  Google Scholar 

  • Knol MJ, Twisk JWR, Beekman ATF et al (2006) Depression as a risk factor for the onset of type 2 diabetes mellitus. A meta-analysis. Diabetologia 49:837–845

    Article  CAS  PubMed  Google Scholar 

  • Ko A, Cantor RM, Weissglas-Volkov D et al (2014) Amerindian-specific regions under positive selection harbour new lipid variants in Latinos. Nat Commun 5:3983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler O, Benros ME, Nordentoft M et al (2014) Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry 71:1381–1391

    Article  PubMed  Google Scholar 

  • Kooner JS, Chambers JC, Aguilar-Salinas CA et al (2008) Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat Genet 40:149–151

    Article  CAS  PubMed  Google Scholar 

  • Kopczak A, Stalla GK, Uhr M et al (2015) IGF-I in major depression and antidepressant treatment response. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 25:864–872

    Article  CAS  Google Scholar 

  • Kupper NHM, Willemsen G, Van Den Berg M et al (2004) Heritability of ambulatory heart rate variability. Circulation 110:2792–2796

    Article  PubMed  Google Scholar 

  • Lavebratt C, Sjöholm LK, Soronen P et al (2010) CRY2 is associated with depression. PLoS One 5:e9407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lemonde S, Du L, Bakish D et al (2004) Association of the C(-1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int J Neuropsychopharm Off Sci J Coll Int Neuropsychopharm 7:501–506

    CAS  Google Scholar 

  • Levy D, Ehret GB, Rice K et al (2009) Genome-wide association study of blood pressure and hypertension. Nat Genet 41:677–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis SJ, Lawlor DA, Davey Smith G et al (2006) The thermolabile variant of MTHFR is associated with depression in the British Women’s Heart and Health Study and a meta-analysis. Mol Psychiatry 11:352–360

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Li Y, Chen L et al (2015) Prevalence of depression in patients with hypertension: a systematic review and meta-analysis. Medicine 94:e1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XH, Xu YF, Cui DH et al (2010) Association of cyclic adenosine monophosphate response element-binding protein gene and major depressive disorder. Chin J Med Gen 27:263–266

    CAS  Google Scholar 

  • Liu JJ, Buisman-Pijlman F, Hutchinson MR (2014) Toll-like receptor 4: innate immune regulator of neuroimmune and neuroendocrine interactions in stress and major depressive disorder. Front Neurosci 8:309

    PubMed  PubMed Central  Google Scholar 

  • Locke AE, Kahali B, Berndt SI et al (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518:197–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohoff FW (2010) Overview of the genetics of major depressive disorder. Curr Psychiatry Rep 12:539–546

    Article  PubMed  PubMed Central  Google Scholar 

  • Lok A, Bockting CLH, Koeter MWJ et al (2013) Interaction between the MTHFR C677T polymorphism and traumatic childhood events predicts depression. Transl Psychiatry 3:e288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Figueroa AL, Norton CS, López-Figueroa MO et al (2004) Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol Psychiatry 55:225–233

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Leon S, Aulchenko YS, Tiemeier H et al (2010) Shared genetic factors in the co-occurrence of symptoms of depression and cardiovascular risk factors. J Affect Disord 122:247–252

    Article  PubMed  Google Scholar 

  • Lu X, Wang L, Lin X et al (2015) Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension. Hum Mol Genet 24:865–874

    Article  CAS  PubMed  Google Scholar 

  • Mahajan A, Go MJ, Zhang W et al (2014) Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 46:234–244

    Article  CAS  PubMed  Google Scholar 

  • Maher BS, Hughes HB, Zubenko WN et al (2010) Genetic linkage of region containing the CREB1 gene to depressive disorders in families with recurrent, early-onset, major depression: a re-analysis and confirmation of sex-specific effect. Am J Med Genet B Neuropsychiatr Genet 153:10–16

    Google Scholar 

  • Manning AK, Hivert M-F, Scott RA et al (2012) A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 44:659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marenberg ME, Risch N, Berkman LF et al (1994) Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med 330:1041–1046

    Article  CAS  PubMed  Google Scholar 

  • Mezuk B, Eaton WW, Albrecht S et al (2008) Depression and type 2 diabetes over the lifespan: a meta-analysis. Diabetes Care 31:2383–2390

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitjans M, Arias B, Jiménez E et al (2015) Exploring genetic variability at PI, GSK3, HPA, and glutamatergic pathways in lithium response: association with IMPA2, INPP1, and GSK3B genes. J Clin Psychopharmacol 35:600–604

    Article  CAS  PubMed  Google Scholar 

  • Mitschelen M, Yan H, Farley JA et al (2011) Long-term deficiency of circulating and hippocampal insulin-like growth factor I induces depressive behavior in adult mice: a potential model of geriatric depression. Neuroscience 185:50–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moses-Kolko EL, Wisner KL, Price JC et al (2008) Serotonin 1A receptor reductions in postpartum depression: a positron emission tomography study. Fertil Steril 89:685–692

    Article  CAS  PubMed  Google Scholar 

  • Murphy GM Jr, Sarginson JE, Ryan HS et al (2013) BDNF and CREB1 genetic variants interact to affect antidepressant treatment outcomes in geriatric depression. Pharmacogenet Genomics 23:301–313

    Article  CAS  PubMed  Google Scholar 

  • Murray CJL, Barber RM, Foreman KJ et al (2015) Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet 386:2145–2191

    Article  PubMed  Google Scholar 

  • Newton-Cheh C, Johnson T, Gateva V et al (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 41:666–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng MCY, Shriner D, Chen BH et al (2014) Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet 10:e1004517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nikpay M, Goel A, Won H-H et al (2015) A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 47:1121–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nouwen A, Winkley K, Twisk J et al (2010) Type 2 diabetes mellitus as a risk factor for the onset of depression: a systematic review and meta-analysis. Diabetologia 53:2480–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otsuki K, Uchida S, Wakabayashi Y et al (2010) Aberrant REST-mediated transcriptional regulation in major depressive disorder. J Psychiatr Res 44:378–384

    Article  PubMed  Google Scholar 

  • Pandey GN, Dwivedi Y, Rizavi HS et al (2010) Brain-derived neurotrophic factor gene and protein expression in pediatric and adult depressed subjects. Prog Neuro-Psychopharmacol Biol Psychiatry 34:645–651

    Article  CAS  Google Scholar 

  • Pandey GN, Rizavi HS, Ren X et al (2014) Toll-like receptors in the depressed and suicide brain. J Psychiatr Res 53:62–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Parsaik AK, Singh B, Murad MH et al (2014) Statins use and risk of depression: a systematic review and meta-analysis. J Affect Disord 160:62–67

    Article  CAS  PubMed  Google Scholar 

  • Pasco JA, Jacka FN, Williams LJ et al (2010) Clinical implications of the cytokine hypothesis of depression: the association between use of statins and aspirin and the risk of major depression. Psychother Psychosom 79:323–325

    Article  PubMed  Google Scholar 

  • Perroud N, Aitchison KJ, Uher R et al (2009) Genetic predictors of increase in suicidal ideation during antidepressant treatment in the GENDEP project. Neuropsychopharm Off Publ Am Coll Neuropsychopharmacol 34:2517–2528

    Article  CAS  Google Scholar 

  • Peter D, Finn JP, Klisak I et al (1993) Chromosomal localization of the human vesicular amine transporter genes. Genomics 18:720–723

    Article  CAS  PubMed  Google Scholar 

  • Plante GE (2005) Depression and cardiovascular disease: a reciprocal relationship. Metab Clin Exp 54:45–48

    Article  CAS  PubMed  Google Scholar 

  • Poulsen P, Ohm Kyvik K, Vaag A et al (1999) Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance - a population-based twin study. Diabetologia 42:139–145

    Article  CAS  PubMed  Google Scholar 

  • Pruitt K, Brown G, Tatusova T et al. (2012) The reference sequence (RefSeq) database. In: National Center for Biotechnology Information (US), Nucleic Acids Research 40. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245008/

  • Raote I, Bhattacharya A, Panicker MM (2007) Serotonin 2A (5-HT2A) Receptor function: ligand-dependent mechanisms and pathways. In: Serotonin receptors in neurobiology. CRC Press, Boca Raton, pp 1–17

    Google Scholar 

  • Rivera M, Cohen-Woods S, Kapur K et al (2011) Depressive disorder moderates the effect of the FTO gene on body mass index. Mol Psychiatry 17:604–611

    Article  PubMed  CAS  Google Scholar 

  • Rosmond R, Björntorp P (2000) The hypothalamic-pituitary-adrenal axis activity as a predictor of cardiovascular disease, type 2 diabetes and stroke. J Intern Med 247:188–197

    Article  CAS  PubMed  Google Scholar 

  • Rudisch B, Nemeroff CB (2003) Epidemiology of comorbid coronary artery disease and depression. Biol Psychiatry 54:227–240

    Article  PubMed  Google Scholar 

  • Rugulies R (2002) Depression as a predictor for coronary heart disease: a review and meta-analysis. Am J Prev Med 23:51–61

    Article  PubMed  Google Scholar 

  • Samaan Z, Anand SS, Anand S et al (2013) The protective effect of the obesity-associated rs9939609 a variant in fat mass- and obesity-associated gene on depression. Mol Psychiatry 18:1281–1286

    Article  CAS  PubMed  Google Scholar 

  • Samaan Z, Lee YK, Gerstein HC et al (2015) Obesity genes and risk of major depressive disorder in a multiethnic population: a cross-sectional study. J Clin Psychiatry 76:e1611–e1618

    Article  PubMed  Google Scholar 

  • Sarchiapone M, Carli V, Roy A et al (2008) Association of polymorphism (Val66Met) of brain-derived neurotrophic factor with suicide attempts in depressed patients. Neuropsychobiology 57:139–145

    Article  CAS  PubMed  Google Scholar 

  • Saus E, Soria V, Escaramís G et al (2010) A haplotype of glycogen synthase kinase 3β is associated with early onset of unipolar major depression. Genes Brain Behav 9:799–807

    Article  CAS  PubMed  Google Scholar 

  • Scherrer JF, Xian H, Bucholz KK et al (2003) A twin study of depression symptoms, hypertension, and heart disease in middle-aged men. Psychosom Med 65:548–557

    Article  PubMed  Google Scholar 

  • Schmidt HD, Shelton RC, Duman RS (2011) Functional biomarkers of depression: diagnosis, treatment, and pathophysiology. Neuropsychopharmacology 36:2375–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumann G, Binder EB, Holte A et al (2014) Stratified medicine for mental disorders. Eur Neuropsychopharmacol 24:5–50

    Article  CAS  PubMed  Google Scholar 

  • Scott RA, Lagou V, Welch RP et al (2012) Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 44:991–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serretti A, Chiesa A, Calati R et al (2011) A preliminary investigation of the influence of CREB1 gene on treatment resistance in major depression. J Affect Disord 128:56–63

    Article  CAS  PubMed  Google Scholar 

  • Shyn SI, Shi J, Kraft JB et al (2011) Novel loci for major depression identified by genome-wide association study of sequenced treatment alternatives to relieve depression and meta-analysis of three studies. Mol Psychiatry 16:202–215

    Article  CAS  PubMed  Google Scholar 

  • Sivakumaran S, Agakov F, Theodoratou E et al (2011) Abundant pleiotropy in human complex diseases and traits. Am J Hum Genet 89:607–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smoller JW (2013) Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381:1371–1379

    Article  CAS  Google Scholar 

  • Soranzo N, Sanna S, Wheeler E et al (2010) Common variants at 10 genomic loci influence hemoglobin A1C levels via glycemic and nonglycemic pathways. Diabetes 59:3229–3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soria V, Martínez-Amorós E, Escaramís G et al (2010) Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 35:1279–1289

    Article  CAS  Google Scholar 

  • Speliotes EK, Willer CJ, Berndt SI et al (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42:937–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stearns FW (2010) One hundred years of pleiotropy: a retrospective. Genetics 186:767–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su S, Lampert R, Lee F et al (2010) Common genes contribute to depressive symptoms and heart rate variability: the twins heart study. Twin Res Hum Genet Off J Int Soc Twin Stud 13:1–9

    Article  Google Scholar 

  • Sullivan PF, Neale MC, Kendler KS (2000) Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatr 157:1552–1562

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Sawamura K, Someya T (2004) The effects of a 5-hydroxytryptamine 1A receptor gene polymorphism on the clinical response to fluvoxamine in depressed patients. Pharmacogenomics J 4:283–286

    Article  CAS  PubMed  Google Scholar 

  • Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A, Ufnal M et al (2010) Brain and cardiovascular diseases: common neurogenic background of cardiovascular, metabolic and inflammatory diseases. J Physiol Pharmacol 61:509–521

    CAS  PubMed  Google Scholar 

  • Van Rijn MJE, Schut AFC, Aulchenko YS et al (2007) Heritability of blood pressure traits and the genetic contribution to blood pressure variance explained by four blood-pressure-related genes. J Hypertens 25:565–570

    Article  PubMed  CAS  Google Scholar 

  • Voight BF, Scott LJ, Steinthorsdottir V et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wain LV, Verwoert GC, O’reilly PF et al (2011) Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet 43:1005–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakeno M, Kato M, Okugawa G et al (2008) The alpha 2A-adrenergic receptor gene polymorphism modifies antidepressant responses to milnacipran. J Clin Psychopharmacol 28:518–524

    Article  CAS  PubMed  Google Scholar 

  • Welter D, Macarthur J, Morales J et al (2014) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42:D1001–D1006

    Article  CAS  PubMed  Google Scholar 

  • Wen W, Zheng W, Okada Y et al (2014) Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index. Hum Mol Genet 23:5492–5504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiteford HA, Degenhardt L, Rehm J et al (2013) Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 382:1575–1586

    Article  PubMed  Google Scholar 

  • Willer CJ, Sanna S, Jackson AU et al (2008) Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40:161–169

    Article  CAS  PubMed  Google Scholar 

  • Willer CJ, Schmidt EM, Sengupta S et al (2013) Discovery and refinement of loci associated with lipid levels. Nat Genet 45:1274–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams LJ, Pasco JA, Mohebbi M et al (2016) Statin and aspirin use and the risk of mood disorders among men. Int J Neuropsychopharmacol 1–4. http://www.ncbi.nlm.nih.gov/pubmed/?term=26839250

  • Willyard C (2014) Heritability: the family roots of obesity. Nature 508:S58–S60

    Article  CAS  PubMed  Google Scholar 

  • Woo YS, Seo HJ, Mcintyre RS et al (2016) Obesity and its potential effects on antidepressant treatment outcomes in patients with depressive disorders: a literature review. Int J Mol Sci 17. http://www.mdpi.com/1422-0067/17/1/80

  • Wray NR, Lee SH, Mehta D et al (2014) Research review: polygenic methods and their application to psychiatric traits. J Child Psychol Psychiatry 55:1068–1087

    Article  PubMed  Google Scholar 

  • Wu Y-L, Ding X-X, Sun Y-H et al (2013) Association between MTHFR C677T polymorphism and depression: an updated meta-analysis of 26 studies. Prog Neuropsychopharmacol Biol Psychiatry 46:78–85

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Xu Y, Sun N et al (2010) The combined effects of the BDNF and GSK3B genes modulate the relationship between negative life events and major depressive disorder. Brain Res 1355:1–6

    Article  CAS  PubMed  Google Scholar 

  • Yen Y-C, Rebok GW, Gallo JJ et al (2007) ApoE4 allele is associated with late-life depression: a population-based study. Am J Geriatr Psychiatry Off J Am Assoc Geriatr Psychiatry 15:858–868

    Article  Google Scholar 

  • Zelinski EL, Deibel SH, Mcdonald RJ (2014) The trouble with circadian clock dysfunction: multiple deleterious effects on the brain and body. Neurosci Biobehav Rev 40:80–101

    Article  PubMed  Google Scholar 

  • Zhang K, Yang C, Xu Y et al (2010) Genetic association of the interaction between the BDNF and GSK3B genes and major depressive disorder in a Chinese population. J Neural Transm (Vienna: 1996) 117:393–401

    Google Scholar 

  • Zheng J-S, Arnett DK, Lee Y-C et al (2013) Genome-wide contribution of genotype by environment interaction to variation of diabetes-related traits. PLoS One 8:e77442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zill P, Baghai TC, Engel R et al (2003) Beta-1-adrenergic receptor gene in major depression: influence on antidepressant treatment response. American journal of medical genetics. Part B. Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 120B:85–89

    Google Scholar 

  • Zou Y-F, Wang Y, Liu P et al (2010) Association of BDNF Val66Met polymorphism with both baseline HRQOL scores and improvement in HRQOL scores in Chinese major depressive patients treated with fluoxetine. Hum Psychopharmacol 25:145–152

    Article  CAS  PubMed  Google Scholar 

  • Zubenko GS, Hughes HB, Stiffler JS et al (2003) Sequence variations in CREB1 cosegregate with depressive disorders in women. Mol Psychiatry 8:611–618

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Azmeraw T.Amare would like to acknowledge the University of Adelaide for the PhD scholarship support through the Adelaide Scholarship International (ASI) program.Azmeraw T.Amare has also been a student of Professor Harold Snieder, Professor Ute Bültmann, and Dr. Catharina A. Hartman, all from the University Medical Center Groningen (UMCG), the University of Groningen in the Netherlands and he acknowledges the input during their mentorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azmeraw T. Amare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amare, A.T., Schubert, K.O., Baune, B.T. (2016). Genetic Overlap Between Depression and Cardiometabolic Disorders. In: Baune, B., Tully, P. (eds) Cardiovascular Diseases and Depression. Springer, Cham. https://doi.org/10.1007/978-3-319-32480-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32480-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32478-4

  • Online ISBN: 978-3-319-32480-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics