Skip to main content

Non-Orthogonal Multiple Access (NOMA) for Future Radio Access

  • Chapter
  • First Online:
5G Mobile Communications

Abstract

Radio access technologies for cellular mobile communications are typically characterized by multiple access schemes, e.g., frequency division multiple access (FDMA), time division multiple access (TDMA), code division multiple access (CDMA), and OFDMA. In the 4th generation (4G) mobile communication systems such as Long-Term Evolution (LTE) (Au et al., Uplink contention based SCMA for 5G radio access. Globecom Workshops (GC Wkshps), 2014. doi:10.1109/GLOCOMW.2014.7063547) and LTE-Advanced (Baracca et al., IEEE Trans. Commun., 2011. doi:10.1109/TCOMM.2011.121410.090252; Barry et al., Digital Communication, Kluwer, Dordrecht, 2004), standardized by the 3rd Generation Partnership Project (3GPP), orthogonal multiple access based on OFDMA or single carrier (SC)-FDMA is adopted. Orthogonal multiple access was a reasonable choice for achieving good system-level throughput performance with simple single-user detection. However, considering the trend in 5G, achieving significant gains in capacity and system throughput performance is a high priority requirement in view of the recent exponential increase in the volume of mobile traffic. In addition the proposed system should be able to support enhanced delay-sensitive high-volume services such as video streaming and cloud computing. Another high-level target of 5G is reduced cost, higher energy efficiency and robustness against emergencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Au, Zh. Liqing, H. Nikopour et al., Uplink contention based SCMA for 5G radio access, in Globecom Workshops (GC Wkshps), 2014. doi:10.1109/GLOCOMW.2014.7063547

    Google Scholar 

  2. P. Baracca, S. Tomasin, L. Vangelista et al., Per sub-block equalization of very long OFDM blocks in mobile communications. IEEE Trans. Commun. (2011). doi:10.1109/TCOMM.2011.121410.090252

    Google Scholar 

  3. J.R. Barry, E.A. Lee, D.E. Messerschmit, Digital Communication (Kluwer, Dordrecht, 2004)

    Book  Google Scholar 

  4. E. Biglieri, G. Caire, G. Taricco, Expurgating the union bound to error probability: a generalization of the Verdu-Shields theorem, in Proceedings of 1997 IEEE International Symposium on Information Theory, 1997. doi:10.1109/ISIT.1997.613310

    Google Scholar 

  5. E. Biglieri, J. Proakis, S. Shamai, Fading channels: information-theoretic and communications aspects. IEEE Trans. Inf. Theory (1998). doi:10.1109/18.720551

    MATH  Google Scholar 

  6. G. Caire, G. Taricco, E. Biglieri, Bit-interleaved coded modulation. IEEE Trans. Inf. Theory (1998). doi:10.1109/18.669123

    MATH  Google Scholar 

  7. R.S. Cheng, S. Verdu, Gaussian multi-access channels with ISI: capacity region and multi-user water-filling. IEEE Trans. Inf. Theory (1993). doi:10.1109/18.256487

    MATH  Google Scholar 

  8. A. Chouly, A. Brajal, S. Jourdan, Orthogonal multicarrier techniques applied to direct sequence spread spectrum CDMA systems, in Proceedings of IEEE Global Telecommunications Conference, including a Communications Theory Mini-Conference. IEEE Technical Program Conference Record, Houston. GLOBECOM ’93, 1993. doi:10.1109/GLOCOM.1993.318364

  9. J. Cioffi, Course notes for Digital Communication: Signal Processing (Stanford Bookstore Custom Publishing, Stanford, CA, 2007)

    Google Scholar 

  10. T.M. Cover, Elements of Information Theory (Wiley, New York, 2006)

    MATH  Google Scholar 

  11. T. Cover, R. McEliece, E. Posner, Asynchronous multiple-access channel capacity. IEEE Trans. Inf. Theory (1981). doi:10.1109/TIT.1981.1056382

    MATH  Google Scholar 

  12. P. Fan, L. Hao, Generalized orthogonal sequences and their applications in synchronous CDMA systems. IEICE Trans. Fundam. E83–A, 2054–2069 (2000)

    Google Scholar 

  13. K. Fazel, Performance of CDMA/OFDM for mobile communication system, in Proceedings of 2nd International Conference on Universal Personal Communications: Gateway to the 21st Century, 1993. doi:10.1109/ICUPC.1993.528524

    Google Scholar 

  14. J. Forney, G. Ungerboeck, Modulation and coding for linear Gaussian channels. IEEE Trans. Inf. Theory (1998). doi:10.1109/18.720542

    MATH  Google Scholar 

  15. C.H.F. Fung, W. Yu, T.J. Lim, Precoding for the multiantenna downlink: multiuser SNR gap and optimal user ordering. IEEE Trans. Commun. (2007). doi:10.1109/TCOMM.2006.885095

    Google Scholar 

  16. R. Gallager, An inequality on the capacity region of multi-access fading, in Channels Communications and Cryptography—Two Sides of One Tapestry (1994), pp. 129–139

    Google Scholar 

  17. A. Goldsmith, Wireless Communication (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  18. S. Hara, R. Prasad, Overview of multicarrier CDMA. IEEE Commun. Mag. (1997). doi:10.1109/ISSSTA.1996.563752

    Google Scholar 

  19. Ch. Hon-Fah, M. Motani, Capacity region of the asynchronous gaussian vector multiple-access channel. IEEE Trans. Inf. Theory (2013). doi:10.1109/TIT.2013.2272012

  20. R. Hoshyar, F.P. Wathan, R. Tafazolli, Novel low-density signature for synchronous CDMA systems over AWGN channel. IEEE Trans. Signal Process. (2008). doi:10.1109/TSP2007.909320

  21. R. Hoshyar, R. Razavi, M. Al-Imari, LDS-OFDM an efficient multiple access technique, in Proceedings of IEEE 71st Vehicular Technology Conference (VTC 2010-Spring), 2010. doi:10.1109/VETECS.2010.5493941

    Google Scholar 

  22. D. Li, A high spectrum efficient multiple access code. Communications (1999). APCC/OECC ’99. doi:10.1109/APCC.1999.824954

  23. L. Liu, L.K. Leung, L. Ping, Simple iterative chip-by-chip multiuser detection for CDMA systems, in Proceedings of VTC 2003-Spring Vehicular Technology Conference. The 57th IEEE Semiannual, 2003. doi:10.1109/VETECS.2003.1207209

    Google Scholar 

  24. L. Liu, J. Tong, L. Ping, Analysis and optimization of CDMA systems with chip-level interleavers. IEEE J. Sel. Areas Commun. (2006). doi:10.1109/JSAC.2005.858896

    Google Scholar 

  25. M.P. Lotter, P. Van Rooyen, An overview of space division multiple access techniques in cellular systems, in Proceedings of South African Symposium Communications and Signal Processing COMSIG ’98, 1998. doi:10.1109/COMSIG.1998.736941

    Google Scholar 

  26. R.V. Nee, R. Prasad, OFDM for Wireless Multimedia Communications (Artech House, Boston, 2000)

    Google Scholar 

  27. H. Nikopour, E. Yi, A. Bayesteh et al., SCMA for downlink multiple access of 5G wireless networks, in IEEE Global Communications Conference (GLOBECOM) (2014). doi:10.1109/GLOCOM.2014.7037423

    Google Scholar 

  28. A. Persson, T. Ottosson, E. Strom, Time-frequency localized CDMA for downlink multi-carrier systems, in Proceedings of IEEE Seventh International Spread Spectrum Techniques and Applications Symposium, 2002. doi:10.1109/ISSSTA.2002.1049298

    Google Scholar 

  29. L. Ping, L. Liu, K. Wu, W.K. Leung, Interleave division multiple-access. IEEE Trans. Wireless Commun. (2006). doi:10.1109/TWC.2006.1618943

    Google Scholar 

  30. T.S. Rappaport, Wireless Communications: Principles and Practice (Prentice Hall, Englewood Cliffs, NJ, 2007)

    MATH  Google Scholar 

  31. R. Razavi, M. Al-Imari, M.A. Imran, On receiver design for uplink low density signature OFDM (LDS-OFDM). IEEE Trans. Commun. (2012). doi:10.1109/TCOMM.2012.082812.110284

    Google Scholar 

  32. Z. Rezki, M.S. Alouini, On the capacity of multiple access and broadcast fading channels with full channel state information at low SNR. IEEE Trans. Wireless Commun. (2014). doi:10.1109/TWC.2013.120113.130895

    Google Scholar 

  33. E. Schulz, Forward 2020 5G (2015). http://cwbackoffice.co.uk/Presentation/RTSS

    Google Scholar 

  34. S. Shamai, A.D. Wyner, Information-theoretic considerations for symmetric, cellular, multiple-access fading channels. ii. IEEE Trans. Inf. Theory (1997). doi:10.1109/18.641554

  35. S. Stanczak, H. Boche, M. Haardt, Are LAS-codes a miracle? in Proceedings of IEEE Global Telecommunications Conference GLOBECOM ’01, 2001. doi:10.1109/GLOCOM.2001.965185

  36. B. Suard, G. Xu, H. Liu, T. Kailath, Uplink channel capacity of space-division-multiple-access schemes. IEEE Trans. Inf. Theory (1998). doi:10.1109/18.681322

    MATH  Google Scholar 

  37. M. Taherzadeh, H. Nikopour, A. Bayesteh, H. Baligh, SCMA codebook design, in IEEE 80th Vehicular Technology Conference (VTC Fall), 2014. doi:10.1109/VTCFall.2014.6966170

    Google Scholar 

  38. D. Toumpakaris, J. Lee, The gap approximation for Gaussian multiple access channels, in Proceedings of IEEE Global Telecommunications Conference GLOBECOM, 2009. doi:10.1109/GLOCOM.2009.5425889

    Google Scholar 

  39. D.N.C. Tse, S.V. Hanly, Multiaccess fading channels. i. Polymatroid structure, optimal resource allocation and throughput capacities. IEEE Trans. Inf. Theory (1998). doi:10.1109/18.737513

  40. A.M. Tulino, L. Li, S. Verdu, Spectral efficiency of multicarrier CDMA. IEEE Trans. Inf. Theory (2005). doi:10.1109/TIT.2004.840875

    MATH  Google Scholar 

  41. S. Verdu, Multiuser Detection (Cambridge University Press, Cambridge, 1998)

    MATH  Google Scholar 

  42. F. Wathan, R. Hoshyar, R. Tafazolli, Dynamic grouped chip-level iterated multiuser detection based on Gaussian forcing technique. IEEE Commun. Lett. (2008). doi:10.1109/LCOMM.2008.071931

    Google Scholar 

  43. H. Wei, L. Hanzo, On the uplink performance of LAS-CDMA. IEEE Trans. Wireless Commun. (2006). doi:10.1109/TWC.2006.1633372

    Google Scholar 

  44. C. Xiaodong, Z. Shengli, G.B. Giannakis, Group-orthogonal multicarrier CDMA. IEEE Trans. Commun. (2004). doi:10.1109/TCOMM.2003.822174

    Google Scholar 

  45. N. Yee, J.P. Linnartz, BER of multi-carrier CDMA in an indoor Rician fading channel, in Proceedings of Conference Signals, Systems and Computers Record of The Twenty-Seventh Asilomar Conference, 1993. doi:10.1109/ACSSC.1993.342548

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razieh Razavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Razavi, R., Dianati, M., Imran, M.A. (2017). Non-Orthogonal Multiple Access (NOMA) for Future Radio Access. In: Xiang, W., Zheng, K., Shen, X. (eds) 5G Mobile Communications. Springer, Cham. https://doi.org/10.1007/978-3-319-34208-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34208-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34206-1

  • Online ISBN: 978-3-319-34208-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics