Skip to main content

Designer Systems of Systems: A Rational Integrated Approach of System Engineering to Tailored Aerodynamics, Aeroelasticity, Aero-viscoelasticity, Stability, Control, Geometry, Materials, Structures, Propulsion, Performance, Sizing, Weight, Cost

  • Chapter
  • First Online:
Transdisciplinary Perspectives on Complex Systems

Abstract

This chapter [Portions of the analysis and results of this continuing research project were presented at the Fourth International Conference on Inverse Problems, Design and Optimization (IPDO–2013), Albi, France (Hilton and D’Urso, Paper ID 06290, 2013).] reports on a comprehensive optimized inverse analysis protocol that has been formulated at the complex multifunctional, multiphysics and multidisciplinary total system of systems (SoS) level leading to trans-disciplinary convergence for the entire designer vehicle with provisions for optimized/tailored aerodynamics, stability, control, materials, structures, propulsion, performance, sizing, weight, cost, etc. The protocol for these inverse problems is based on a generalized calculus of variations approach, including but not limited to Lagrange multipliers.

The possibility of achieving such a generalized unified approach has become a reality through the double advent of modern computer software and hardware. First, the availability of such programs as MATLAB™, MATHEMATICA™, MAPLE™, etc. make it feasible to carry out the detailed large scale analytical enterprises, such as multiple symbolic integrations, differentiations, matrix algebra, etc. Secondly, the online operational advent of the University of Illinois at Urbana-Champaign National Center for Supercomputing Applications/National Science Foundation (UIUC NCSA/NSF) Blue Waters™, the sustained peta-scale (1015 flops/s) computing system (Anonymous, http://www.ncsa.uiuc.edu/BlueWaters/, 2011; Anonymous, http://www.ncsa.illinois.edu/News/Stories/Kramer/, 2009; Anonymous, About blue waters, 2014; Anonymous, https://bluewaters.ncsa.illinois.edu, 2013), will allow efficient solutions of the necessary hundreds of millions of simultaneous nonlinear algebraic equations describing parameters for an entire air or space flight vehicle (Through this chapter the term vehicle is used to denote atmospheric and space flight vehicles unless otherwise specified.) or other large scale SoS that may contain numerous rigid, specified and/or flexible sub-systems as well as aerodynamics, cost, manufacturing, performance, propulsion, stability and control, etc.

Illustrative examples are limited to structures, solid mechanics and aero-viscoelastic examples that represent currently available solutions. Additional parts of the entire complex SoS are under investigation and will be reported in archival journals in future years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Civil and military airplanes, missiles, spacecraft, UAVs, MAVs, wind turbine and helicopter blades, helicopters, etc.

  2. 2.

    Entire passage: “Two important characteristics of maps should be noticed. A map is not the territory it represents, but, if correct, it has a similar structure to the territory, which accounts for its usefulness” [125].

  3. 3.

    First online operation in 2013.

  4. 4.

    FGM = functionally graded materials, EFGM = elastic FGM, VFGM = viscoelastic FGM.

  5. 5.

    See also Sect. 12 for details on cost functions.

  6. 6.

    Such as von Mises, maximum stress or strain, octahedral shear [195], deterministic Shanley-Ryder [196], probabilistic Shanley-Ryder [21, 132], etc.

  7. 7.

    From a fundamental mechanics point of view, FGMs are essentially non-homogeneous materials and should be treated as such. Additionally and separately they may also be anisotropic.

  8. 8.

    Excluded: radio, TV, GPS, monitors, autopilot, navigation, etc.; not necessarily excluded: controls.

  9. 9.

    In economics, elasticity is defined as the degree to which a demand or supply is sensitive to changes in price or income.

References

  1. Bruhn, E. F., Bollard, R. J. H., Hackman, L. E., Lianis, G., William, M., Schmitt, A. F., et al. (1973). Analysis and design of flight vehicle structures. Indianapolis: S. R. Jacob.

    Google Scholar 

  2. Altus, E. (1989). Mechanics of composite materials: An introductory course. Toronto: Ontario Centre for Materials Research.

    Google Scholar 

  3. Gibson, R. F. (1994). Principles of composite material mechanics. New York: McGraw-Hill.

    Google Scholar 

  4. Hyer, M. W. (Ed.). (1993). Mechanics of composite materials—Nonlinear effects, AMD-159. New York: ASME.

    Google Scholar 

  5. Hyer, M. W. (2008). Stress analysis of fiber-reinforced composite materials. Lancaster, PA: DEStech Publications.

    Google Scholar 

  6. Mallick, P. K. (2008). Fiber-reinforced composites, materials, manufacturing, and design (3rd ed.). New York: CRC Press.

    Google Scholar 

  7. Jones, R. M. (1999). Mechanics of composite materials (2nd ed.). New York: CRC Press.

    Google Scholar 

  8. Kuhn, W. (1939). Elastizität und Viscosität hochpolymerer Verbindungen. Angewandte Chemie, 52, 289–301. doi:10.1002/ange.19390521602.

    Article  Google Scholar 

  9. Sierakowski, R. L., & Chaturvedi, S. K. (1997). Dynamic loading and characterization of fiber-reinforced composites. New York: John Wiley & Sons Inc.

    Google Scholar 

  10. Vinson, J. R. (1999). The behavior of sandwich structures of isotropic and composite materials. Lancaster, PA: Technimic Publishing Co.

    Google Scholar 

  11. Vinson, J. R., & Sierakowski, R. L. (2011). The behavior of structures composed of composite materials (2nd ed.). Amsterdam: Kluwer.

    Google Scholar 

  12. Hilton, H. H. (2010). Aeroelasticity and aero-viscoelasticity: A critical appreciation of similarities and differences. In Proceedings 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials (SDM) Conference, AIAA Paper 2010-2702. Orlando, FL.

    Google Scholar 

  13. Hilton, H. H. (2011). Equivalences and contrasts between thermo-elasticity and thermo-viscoelasticity: A comprehensive critique. Journal of Thermal Stresses, 34, 488–535. doi:10.1080/01495739.2011.564010.

    Article  Google Scholar 

  14. Hilton, H. H., Lee, D. H., & El Fouly, A. R. A. (2008). General analysis of viscoelastic designer functionally graded auxetic materials engineered/tailored for specific task performances. Mechanics of Time-Dependent Materials, 12, 151–178.

    Article  Google Scholar 

  15. Weaver, P. M., & Ashby, M. F. (1996). The optimal selection of material and section shape. Journal of Engineering Design, 7, 129–150.

    Article  Google Scholar 

  16. Shanley, F. R. (1948). Principles of optimum structural design as applied to aircraft weight analysis. Santa Monica, CA: Douglas Aircraft C.

    Google Scholar 

  17. Lin, Y.-K. (1967). Probabilistic theory of structural dynamics. Huntington, NY: Krieger.

    Google Scholar 

  18. Lin, Y.-K., & Cai, G.-Q. (1995). Probabilistic structural dynamics: Advanced theory and applications. New York: McGraw-Hill.

    Google Scholar 

  19. Elishakoff, I. (2010). Optimization and anti-optimization of structures under uncertainty. London: Imperial College Press.

    Book  Google Scholar 

  20. Gallagher, R. H., & Zienkiewicz, O. C. (Eds.). (1973). Optimum structural design—Theory and applications. New York: John Wiley & Sons.

    Google Scholar 

  21. Hilton, H. H., & Feigen, M. (1960). Minimum weight analysis based on structural reliability. Journal of the Aero/Space Sciences, 27, 641–652.

    Article  Google Scholar 

  22. Lemanski, S. L., & Weaver, P. M. (2003). Analytical optimization of composite cylindrical shells to meet given cross-sectional stiffness properties. In Proceedings 44th AIAA/ASCE/ASME/AHS SDM Conference. Reston, VA.

    Google Scholar 

  23. Cecchini, L., & Weaver, P. M. (2003). The optimization of foam-filled cylindrical shells subject to flexural loading. In Proceedings 44th AIAA/ASCE/ASME/AHS SDM Conference. Reston, VA.

    Google Scholar 

  24. Weaver, P. M. (2004). On optimization of long anisotropic flat plates subject to shear buckling loads. In Proceedings 45th AIAA/ASCE/ASME/AHS SDM Conference. Reston, VA.

    Google Scholar 

  25. Lemanski, S. L., & Weaver, P. M. (2006). Optimization of a 4-layer laminated cylindrical shell to meet given cross-sectional stiffness properties. Composite Structures, 72, 163–176.

    Article  Google Scholar 

  26. Herencia, J. E., Weaver, P. M., & Friswell, M. I. (2006). Local optimization of long anisotropic laminated fibre composite panels with T-shape stiffeners. In Proceedings 47th AIAA/ASCE/ASME/AHS SDM Conference. Newport, RI.

    Google Scholar 

  27. Herencia, J. E., Weaver, P. M., & Friswell, M. I. (2007). Optimization of long anisotropic laminated fiber composite panels with T-shaped stiffeners. AIAA Journal, 45, 2497–2509.

    Article  Google Scholar 

  28. Herencia, J. E., Weaver, P. M., & Friswell, M. I. (2007). Optimization of anisotropic plates that vary in thicknesses and properties. In Proceedings 16th International Conference on Composite Materials. Kyoto.

    Google Scholar 

  29. Herencia, J. E., Weaver, P. M., & Friswell, M. I. (2007). Local optimization of anisotropic composite panels with T-shape stiffeners. In Proceedings 48th AIAA/ASCE/ASME/AHS SDM Conference. Waikiki, HI.

    Google Scholar 

  30. Bloomfield, M. W., Herencia, J. E., & Weaver, P. M. (2008). Optimization of anisotropic composite plates using an increased design envelope of ply orientations. In Proceedings 49th AIAA/ASCE/ASME/AHS SDM Conference. Schaumburg, IL.

    Google Scholar 

  31. Herencia, J. E., Hatfka, R. T., Weaver, P. M., & Friswell, M. I. (2008). Lay-up optimization of composite stiffened panels using linear approximations in lamination space. AIAA Journal, 46, 2387–2391.

    Article  Google Scholar 

  32. Blanchard, I. (2014). Composite design optimization for automated fiber placement. SAE Aerospace Engineering, 4, 14–19 (Also SAE Paper 2014-01-2261).

    Google Scholar 

  33. Herencia, J. E., Weaver, P. M., & Friswell, M. I. (2008). Initial sizing optimization of anisotropic composite panels with T-shaped stiffeners. Thin-Walled Structures, 46, 399–412.

    Article  Google Scholar 

  34. Hilton, H. H., & Yi, S. (1992). Analytical formulation of optimum material properties for viscoelastic damping. Journal of Smart Materials and Structures, 1, 113–122.

    Article  Google Scholar 

  35. Beldica, C. E., & Hilton, H. H. (1999). Analytical simulations of optimum anisotropic linear viscoelastic damping properties. Journal of Reinforced Plastics and Composites, 18, 1658–1676.

    Google Scholar 

  36. Hilton, H. H., & Sossou, G. (2012). Viscoelastic and structural damping analysis with designer materials. In Proceedings 50th AIAA Aerospace Sciences Meeting Multidisciplinary Design Optimization (MDO), AIAA Paper 2012-1256.

    Google Scholar 

  37. Hilton, H. H. (2003). Optimum viscoelastic designer materials for minimizing failure probabilities during composite cure. Journal of Thermal Stresses, 26, 547–557.

    Article  Google Scholar 

  38. Hilton, H. H. (2005). Optimum linear and nonlinear viscoelastic designer functionally graded materials—characterization and analysis. Composites Part A: Applied Science and Manufacturing, 36, 1329–1334.

    Article  Google Scholar 

  39. Hilton, H. H. (2006). Designer linear viscoelastic material properties tailored to minimize probabilistic failures or thermal stress induced dynamic column creep buckling. Journal of Thermal Stresses, 29, 403–421.

    Article  Google Scholar 

  40. Hilton, H. H., & Lee, D. H. (2006). Designer functionally graded viscoelastic materials performance tailored to minimize probabilistic failures in viscoelastic panels subjected to aerodynamic noise. In Proceedings 9th International Conference on Recent Advances in Structural Dynamics, 18–39. Southampton.

    Google Scholar 

  41. Hilton, H. H., & El Fouly, A. R. A. (2007). Designer auxetic viscoelastic sandwich column materials tailored to minimize creep buckling failure probabilities and prolong survival times. In Proceedings 48th AIAA/ASME/ASCE/AHS/ASC SDM Conference, AIAA Paper 2007-2400.

    Google Scholar 

  42. Hilton, H. H., & D’Urso, S. J. (2013). Designer Euler and elastica columns subjected to aerodynamic loads—System engineering of the aeroelasticity of wind turbine towers. In Proceedings 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials (SDM) Conference, AIAA Paper 2013-1821. Boston, MA.

    Google Scholar 

  43. Naraghi, M., Chasiotis, I., & Hilton, H. H. (2009). Theory of designer nano – viscoelastic composites. In Proceedings World Scientific and Engineering Academy International Conference on Continuum Mechanics 09, 225–233. Cambridge.

    Google Scholar 

  44. Hilton, H. H. (2009). Analytical formulation of optimal viscoelastic designer material properties for sandwich/composites. In Proceedings 16th Journées Nationales sur les Composites, Paper No. 119. Toulouse.

    Google Scholar 

  45. Hilton, H. H., & Lee, D. H. (2006). Designer functionally graded viscoelastic materials performance tailored to minimize probabilistic failures in viscoelastic panels subjected to aerodynamic noise. In Proceedings 9th International Conference on Recent Advances in Structural Dynamics, CD-ROM:1-16. University of Southampton.

    Google Scholar 

  46. Hilton, H. H. (2006). Tailored designer functionally graded materials for minimizing probabilistic creep buckling failures in linear viscoelastic columns with large deformations and follower loads. In Proceedings 47th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, AIAA Paper AIAA-2006-1629. Newport, RI.

    Google Scholar 

  47. Hilton, H. H. (2006). Tailored designer functionally graded materials for minimizing probabilistic creep buckling failures in linear viscoelastic columns with large deformations and follower loads. In Proceedings 47th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, AIAA Paper AIAA-2006-1629. Reston, VA.

    Google Scholar 

  48. Hilton, H. H. (2007). Designer auxetic viscoelastic materials for sandwich plates tailored to minimize failure probabilities and prolong survival times. In Proceedings of the 2007 International Mechanical Engineering Congress and Exposition. ASME Paper IMECE 2007-41079. Seattle, WA.

    Google Scholar 

  49. Hilton, H. H. (2008). Functionally graded designer viscoelastic materials tailored to perform prescribed tasks with failure probabilities and survival times. In G. H. Paulino, M. J. Pindera, R. H. Dodds, F. A. Rochinha, E. V. Dave, & L. Chen (Eds.), Proceedings Multiscale and Functionally Graded Materials Conference (FGM-IX), AIP-973:410–415. American Institute of Physics, Melville, NY.

    Google Scholar 

  50. Hilton, H. H., Lee,D. H., & Merrett,C. G. (2009). Wing torsional divergence avoidance through designer viscoelastic material properties and tailored aero-servo-controls. In Proceedings International Forum on Aeroelasticity and Structural Dynamics, Paper IFASD-2009-146. Reston, VA.

    Google Scholar 

  51. Hilton, H. H. (2009). A novel approach to structural analysis: Designer/engineered viscoelastic materials vs. ‘off the shelf’ property selections. Journal of Vacuum Technology and Coating, 10, 23–29.

    Google Scholar 

  52. Lee, D. H., Hilton, H. H., & Velicki, A. (2010). Optimum designer stitched composites. In Proceedings 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials (SDM) Conference, AIAA Paper 2010-2942. Reston, VA.

    Google Scholar 

  53. Hilton, H. H., Lee, D. H., & Velicki, A. (2010). Designer composite materials to alleviate aeroelastic and aero-viscoelastic wing and panel problems (torsional divergence, flutter, aero-acoustics. In Aerospace Flutter and Dynamics Council Conference. NASA Langley, VA.

    Google Scholar 

  54. Lee, D. H., Hilton, H. H., & Velicki, A. (2011). Optimum designer materials and geometries for stitched composites. Proceedings 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials (SDM) Conference, AIAA Paper 2011-1910. Reston, VA.

    Google Scholar 

  55. Hilton, H. H. (2014). Designer viscoelastic materials for minimizing vibration effects. In Proceedings 19th Symposium on Vibrations, Shock and Noise (VISHNO), Paper 135. Aix-en-Provence.

    Google Scholar 

  56. Hilton, H. H., & D’Urso, S. (2014). Astro-elastic and astro-viscoelastic system engineering: Optimum solar sail configurations based on astrodynamics, designer materials, sizing and geometry. In Proceedings AIAA SPACE 2014 Conference, AIAA Paper 2014-4203. San Diego, CA. doi:10.2514/6.2014-4203.

  57. Pedersen, P. (Ed.). (1992). Optimal design with advanced materials: The Frithiof Niordson Volume: Proceedings of the IUTAM Symposium on Optimal Design with Advanced Materials. Lyngby.

    Google Scholar 

  58. Vasiliev, V. V., & Gürdal, Z. (Eds.). (1999). Optimal design: Theory and applications to materials and structures. Lancaster, PA: Technomic Publishing Co.

    Google Scholar 

  59. Ricker, K. (2006). The shape of things to come. http://www.trecc.org/features/USSAshville/

  60. Strebel, E. (2009). A new approach to structural analysis. NCSA ACCESS, 22(1), 23. http://www.ncsa.uiuc.edu/News/09/0129NCSAresearcher.html.

    Google Scholar 

  61. Hilton, H. H., Lee, D. H., & Merrett, C. G. (2009). Novel protocols of matching optimized designer aero-servo-controls with engineered viscoelastic materials. In Proceedings IV ECCOMAS SMART-09, Paper ID038. Porto.

    Google Scholar 

  62. Merrett, C. G., & Hilton, H. H. (2009). Panel flutter and aerodynamic noise attenuation through aero-servo-viscoelastic controls. In Proceedings 50th AIAA/ASME/ASCE/AHS SDM Conference, AIAA Paper 2009-2512. Reston, VA.

    Google Scholar 

  63. Lee, D. H., Hilton, H. H., & Velicki, A. (2010). Optimum designer/tailored stitched composites. In Proceedings 51st AIAA/ASME/ASCE/AHS SDM Conference, AIAA Paper 2010-2942. Reston, VA.

    Google Scholar 

  64. Van Krevelen, D. W. (1990). Properties of polymers—Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions (3rd ed.). Amsterdam: Elsevier.

    Google Scholar 

  65. Emspak, J. (2012). Scientists use mathematical shortcut to create new metals. www.innovationnewsdaily.com/1546-mathematical-shortcut-create-new-metals.html

  66. Cagle, C. M., & Schlecht, R. W. (2007). Composite elastic skins for shape changing structures. NASA Tech Briefs LAR–16599–1. http://www.techbriefs.com/content/view/1113/34/

  67. Spencer, N. D. (2012). Tailoring surfaces: Modifying surface composition and structure for applications in tribology, biology and catalysis. Singapore: World Scientific.

    Google Scholar 

  68. Valasek, J. (Ed.). (2012). Morphing aerospace vehicles and structures. John Wiley & Sons, Hoboken. doi:10.1002/9781119964032.

  69. Brinkmeyer, A. W., Santer, M., Pirrera, A., & Weaver, P. M. (2012). Morphing composite panel with pseudo-bistable viscoelastic behavior. In SEM XII International Congress & Exposition on Experimental and Applied Mechanics, SEM Paper 404.

    Google Scholar 

  70. Boisse, P. (Ed.). (2011). Composite reinforcements for optimum performance. Cambridge, UK: Woodhead Publishing.

    Google Scholar 

  71. Liebeck, R. H. (1973). A class of airfoils designed for high lift in incompressible flow. Journal of Aircraft, 10, 610–617.

    Article  Google Scholar 

  72. Liebeck, R. H., & Ormsbee, A. L. (1970). Optimization of airfoils for maximum lift. Journal of Aircraft, 7, 409–415.

    Article  Google Scholar 

  73. Liebeck, R. H. (1978). Design of subsonic airfoils for high lift. Journal of Aircraft, 15, 547–561.

    Article  Google Scholar 

  74. Adkins, C. N., & Liebeck, R. H. (1983). Design of optimum propellers. In AIAA Paper AIAA-1983-190.

    Google Scholar 

  75. Weber, J. (1955). The calculation of the pressure distribution on the surface of thick cambered wings and the design of wings with given pressure distribution. In R & M No. 3026, R.A.E. Report Aero. 2548.

    Google Scholar 

  76. Weisshaar, T. A. (2006). Induced drag reduction using aeroelastic tailoring with adaptive control surfaces. Journal of Aircraft, 43, 157–164.

    Article  Google Scholar 

  77. Volpe, G. (1990). Inverse airfoil design: A classical approach updated for transonic flow. Progress in Astronautics and Aeronautics, 125, 191–215 (AIAA, Reston, VA).

    Google Scholar 

  78. Volpe, G. (1983). The inverse design of closed airfoils in transonic flow. In AIAA Paper 1983-504.

    Google Scholar 

  79. Adkins, C. N., & Liebeck, R. H. (1994). Design of optimum propellers. Journal of Propulsion and Power, 10, 676–682.

    Article  Google Scholar 

  80. Giguère, P., & Selig, M. S. (1998). New airfoils for small horizontal axis wind turbines. ASME Journal of Solar Energy Engineering, 120, 108–114.

    Article  Google Scholar 

  81. Selig, M. S., & Guglielmo, J. J. (1997). High-lift low Reynolds number airfoil design. Journal of Aircraft, 34, 72–79.

    Article  Google Scholar 

  82. Gopalarathnam, A., Broughton, B. A., McGranahan, B. D., & Selig, M. S. (2003). Design of low Reynolds number airfoils with trips. Journal of Aircraft, 40, 768–775.

    Article  Google Scholar 

  83. Selig, M. S. (2011). PROFOIL-WWW: Airfoil design software for the web. http://www.profoil.org

  84. Eppler, R. (1900). Airfoil design and data. Berlin: Springer.

    Google Scholar 

  85. Anonymous. (2000). Eppler airfoil design and analysis code. http://www.airfoils.com/eppler.htm

  86. Selig, M. S., & Maughmer, M. D. (1992). Generalized multi-point inverse airfoil design. AIAA Journal, 30, 2618–2625.

    Article  Google Scholar 

  87. Maughmer, M. D., & Somers, D. M. (1989). Design and experimental results for a high-altitude, long-endurance airfoil. Journal of Aircraft, 26, 148–153.

    Article  Google Scholar 

  88. Selig, M. S. (2012). The UIUC airfoil data site. http://www.ae.illinois.edu/m-selig/ads.html

  89. Eden, P. E. (2012). Time for CIASTA. Aerospace Testing International, 12, 14–18. http://viewer.zmags.com/publication/91faafef#/91faafef/2.

    Google Scholar 

  90. Marzat, J., Piet-Lahander, H., Damongeot, F., & Walters, E. (2012). Model-based fault analysis for aerospace systems: A survey. Journal of Aerospace Engineering, 226, 1329–1360.

    Google Scholar 

  91. Benavides, E. M. (2012). Advanced engineering design—An integrated approach. Philadelphia: Woodland Publishing.

    Google Scholar 

  92. Ceruti, A., & Marzocca, P. (2013). A conceptual approach to unconventional airship design and synthesis. Journal of Aerospace Engineering. doi:10.1061/(ASCE)AS.1943-5525.0000344.

  93. Raymer, D. P. (2006). Aircraft design: A conceptual approach (4th ed.). Reston, VA: AIAA Educational Series.

    Google Scholar 

  94. Torenbeek, E. (2013). Advanced aircraft design: Conceptual design, technology and optimization of subsonic civil airplanes. New York: Wiley.

    Book  Google Scholar 

  95. Sadraey, M. H. (2012). Aircraft design: A systems engineering approach. New York: Wiley.

    Book  Google Scholar 

  96. Carichner, G. E., & Nicholai, L. M. (1984 & 2013). Fundamentals of aircraft and airship designAirship design and case studies (Vol. 1 & 2). AIAA Education Series, Renton, VA.

    Google Scholar 

  97. Kundu, A. (2010). Aircraft design. West Nyack, NY: Cambridge University Press.

    Book  Google Scholar 

  98. Fielding, J. P. (1999). Introduction to aircraft design. West Nyack, NY: Cambridge University Press.

    Book  Google Scholar 

  99. Teichmann, F. K. (1944). Airplane design manual. New York: Pitman.

    Google Scholar 

  100. Volodin, V. V., Lyseitsev, N. K., & Maximovich, V. Z. (1985). Idiosyncrasies of designing IC powered airplanes for vertical takeoff and landing. Mashinosfroenie, Moscow (in Russian).

    Google Scholar 

  101. Austin, R. (2010). Unmanned aircraft systems—UAVs design, development and deployment (AIAA educational series). New York: John Wiley & Sons.

    Book  Google Scholar 

  102. Moir, I., & Seabridge, A. (2013). Design and development of aircraft systems (2nd ed.). New York: John Wiley & Sons.

    Google Scholar 

  103. Nicolai, L. M. (1984). Fundamentals of aircraft design. Dayton, OH: METS (rev ed.).

    Google Scholar 

  104. Braha, D., Minai, A. A., & Ben-Yam, Y. (Eds.). (2006). Complex engineered systems. New York: Springer.

    Google Scholar 

  105. Ferman, M. A. (2011). A wing design method for aerospace students and home builders—Strength, weight, flutter, divergence, buckling, deflection and twist. Bloomington, IN: Trafford Publishing.

    Google Scholar 

  106. Shanley, F. R. (1952). Weight-strength analysis of aircraft structures. New York: Dover.

    Google Scholar 

  107. Dahan, E., Herman, Z. A. C., Procaccino, C. T., Wang, T., Bandyopadhyay, S., Ahern, D., et al. (2013). Integration into system functionality and decomposition as an extension to previous Mars exploration studies. In AIAA SPACE 2013 Conference & Exposition, AIAA Paper ID 1661909. San Diego, CA.

    Google Scholar 

  108. Hinrichsen, D., & Pritchard, A. J. (2005). Mathematical systems theory I—Modelling, state space analysis, stability and robustness. New York: Springer Verlag. ISBN 9783540441250.

    Book  Google Scholar 

  109. Klein, V., & Morelli, E. A. (2006). Aircraft system identification: Theory and practice. AIAA Education Series, Reston, VA.

    Google Scholar 

  110. Martins, J. R. R. A., & Lambe, A. B. (2013). Multidisciplinary design optimization: A survey of architectures. AIAA Journal, 51, 2049–2075.

    Article  Google Scholar 

  111. D’Urso, S. J., & Sivier, K. R. (1991). An example of industrial/interaction with undergraduate aircraft design program. American Institute of Aeronautics and Astronautics, AIAA Paper 91-3116.

    Google Scholar 

  112. Sivier, K. R., & D’Urso, S. J. (1994). Tauchi sizing experiments in the aircraft conceptual design process. American Institute of Aeronautics and Astronautics, AIAA Paper ICAS – 94.1.8.5.

    Google Scholar 

  113. Park, H.-U., Chung, J., & Neufeld, D. (2016). Uncertainty based aircraft derivative design for requirement changes. The Aeronautical Journal, 120, 375–389.

    Article  Google Scholar 

  114. Teichmann, F. K. (1939). Airplane Design Manual. New York: Pitman.

    Google Scholar 

  115. Cassidy, P. F., Gatzke, T. D., & Vaporean, C. N. (2008). Integrating synthesis and simulation for conceptual design. AIAA Paper 2008-1443.

    Google Scholar 

  116. Long, D., & Scott, Z. (2011). A primer for model-based systems engineering (2nd ed.). Blacksburg, VA: Vitech Corp.

    Google Scholar 

  117. D’Urso, S. J. (1990). Configuring tactical aircraft. AIAA Paper 90-3305.

    Google Scholar 

  118. Howe, D. (2004). Aircraft loading and structural layout. AIAA Education Series, AIAA, Reston, VA.

    Google Scholar 

  119. Maier, M. W., & Rechtin, E. (2000). The Art of Systems Architecting (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  120. Wright, T. P. (1936). Factors affecting the cost of airplanes. Journal of the Aeronautical Sciences, 3(4), 122–128.

    Article  Google Scholar 

  121. Hirsch, W. Z. (1956). Firm progress ratios. Econometrica, 24, 136–143.

    Article  Google Scholar 

  122. Raymer, D. P. (1992). Aircraft design: A conceptual approach. Reston, VA: American Institute of Aeronautics and Astronautics.

    Google Scholar 

  123. Nadeau, M. C., Kar, A., Roth, R., & Kirchain, R. (2010). A dynamic process-based cost modeling approach to understand learning effects in manufacturing. International Journal of Production Economics, 128, 223–234.

    Article  Google Scholar 

  124. Diewert, W. E. (1974). Applications of duality theory”, Frontiers of Quantitative Economics 2:106–176. Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  125. Korzybski, A. (1958). Science and sanity: An introduction to non-aristotelian systems and general semantics (4th ed.). Lakeville, CT: Institute of General Semantics.

    Google Scholar 

  126. Heisenberg, W. (1962). Physics and philosophy: The revolution in modern science. New York: Harper.

    Google Scholar 

  127. Rish, I., Cecchi, G. A., Lozano, A., & Niculescu-Mizil, A. (Eds.). (2014). Practical applications of sparse modeling. Cambridge, MA: MIT Press.

    Google Scholar 

  128. Anonymous. (2011). http://www.ncsa.uiuc.edu/BlueWaters/

  129. Anonymous. (2009). http://www.ncsa.illinois.edu/News/Stories/Kramer/

  130. Tarantola, A. (2005). Inverse problem theory and methods for model parameters estimation. Philadelphia, PA: SIAM.

    Book  Google Scholar 

  131. Jones, R. M. (2015). Design of Composite Structures. Blacksburg, VA: Bull Ridge Publishing.

    Google Scholar 

  132. Hilton, H. H., & Ariaratnam, S. T. (1993). Invariant anisotropic large deformation deterministic and stochastic combined load failure criteria. International Journal of Solids and Structures, 31, 3285–3293.

    Article  Google Scholar 

  133. Aik, K. K. (2003). Plasma sprayed functionally graded ZrO2/NiCoCrAlY thermal barrier coating. http://www.ntu.edu.sg/mae/research/programmes/adv_materials/FGM.htm

  134. Anonymous. (2001). Systems engineering fundamentals. Fort Belvoir, VA: Defense Acquisition University Press.

    Google Scholar 

  135. Wasson, C. S. (2005). System analysis, design, and development: Concepts, principles, and practices. Hoboken, NJ: Wiley-Interscience.

    Book  Google Scholar 

  136. Lagrange, J.-L. (1788). Mécanique analytique. Paris: Gauthier-Villars et fils.

    Google Scholar 

  137. Lagrange, J.-L. (1811). Mécanique analytique. Courcier, Paris. (2009) Reissued by Cambridge University Press, New York. ISBN: 978-1-108-00174-8.

    Google Scholar 

  138. Lagrange, J.-L. (1762). Essai d’une nouvelle methode pour déterminer les maxima et les minima des formules integrales indéfinies. Mélanges de philosophie et de mathématique de la Société Royale de Turin, 1, 173–195.

    Google Scholar 

  139. Komzsik, L. (2014). Applied calculus of variations for engineers (2nd ed.). Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  140. Elishakoff, I., & Ohsaki, M. (2005). Eigenvalues of inhomogeneous structures. CRC Press, Boca Rotan. doi:10.1201/9781420038019.

  141. Hilton, H. H. (2012). Generalized fractional derivative anisotropic viscoelastic characterization. Materials, 5, 169–191. doi:10.3390/ma5010169.

    Article  Google Scholar 

  142. Prony, G. C. F. M. R., & Baron de. (1795). Essai experimental et analytique. Journal de l’École Polytechnique de Paris, 1, 24–76.

    Google Scholar 

  143. Alfrey, T., Jr. (1948). Mechanical behavior of high polymers. New York: Interscience Publishers, Inc.

    Google Scholar 

  144. Read, W. T. (1950). Stress analysis for compressible viscoelastic materials. Journal of Applied Physics, 21, 671–674.

    Article  Google Scholar 

  145. Freudenthal, A. M. (1950). The inelastic behavior of engineering materials and structures. New York: John Wiley & Sons.

    Google Scholar 

  146. Aklonis, J. J., MacKnight, W. J., & Shen, M. C. (1972). Introduction to polymer viscoelasticity. New York: Wiley.

    Google Scholar 

  147. Aklonis, J. J., & MacKnight, W. J. (1983). Introduction to polymer viscoelasticity. New York: Wiley.

    Google Scholar 

  148. Barnes, H. A., Hutton, J. F., & Walters, K. (1989). An introduction to rheology. Amsterdam: Elsevier.

    Google Scholar 

  149. Bartenev, G. M., & Zuyev, Y. S. (1968). Strength and failure of viscoelastic materials. Oxford: Pergamon Press.

    Google Scholar 

  150. Bažant, Z. P. (Ed.). (1988). Mathematical modeling of creep and shrinkage of concrete. New York: John Wiley and Sons.

    Google Scholar 

  151. Bažant, Z. P., & Cedolin, L. (1991). Stability of structures—Elastic, inelastic, fracture and damage theories. New York: Oxford University Press.

    Google Scholar 

  152. Bergen, J. T. (1960). Viscoelasticity; phenomenological aspects. New York: Academic.

    Google Scholar 

  153. Betten, J. (2005). Creep mechanics (2nd ed.). New York: Springer.

    Google Scholar 

  154. Biot, M. A. (1965). Mechanics of incremental deformations. New York: John Wiley & Sons.

    Google Scholar 

  155. Bland, D. R. (1960). The theory of linear viscoelasticity. New York: Pergamon Press.

    Google Scholar 

  156. Brinson, H. F., & Catherine Brinson, L. (2008). Polymer engineering science and viscoelasticity: An introduction. New York: Springer.

    Book  Google Scholar 

  157. Christensen, R. M. (1982). Theory of viscoelasticity—An introduction (2nd ed.). New York: Academic.

    Google Scholar 

  158. Drozdov, A. D., & Kolmanovski, V. B. (1994). Stability in viscoelasticity. Amsterdam: North-Holland.

    Google Scholar 

  159. Drozdov, A. D. (1996). Finite elasticity and viscoelasticity—A course in nonlinear mechanics of solids. Singapore: World Scientific.

    Book  Google Scholar 

  160. Drozdov, A. D. (1998). Mechanics of viscoelastic solids. New York: John Wiley & Sons.

    Google Scholar 

  161. Drozdov, A. D. (1998). Viscoelastic structures mechanics of growth and aging. San Diego: Academic.

    Google Scholar 

  162. Eringen, A. C. (1962). Nonlinear theory of continuous media. New York: McGraw-Hill.

    Google Scholar 

  163. Fabrizio, M., & Morro, A. (1992). Mathematical problems in linear viscoelasticity. Philadelphia, PA: SIAM.

    Book  Google Scholar 

  164. Ferry, J. D. (1980). Viscoelastic properties of polymers. New York: John Wiley & Sons.

    Google Scholar 

  165. Findley, W. N., Lai, J. S., & Onaran, K. (1976). Creep and relaxation of nonlinear materials. Amsterdam: North-Holland Publ. Co.

    Google Scholar 

  166. Flügge, W. (1967). Viscoelasticity. Waltham, MA: Blaisdell Pub. Co.

    Google Scholar 

  167. Fung, Y. C. (1965). Foundations of solid mechanics. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  168. Golden, J. M., & Graham, C. A. C. (1988). Boundary value problems in linear viscoelasticity. Berlin: Springer Verlag.

    Book  Google Scholar 

  169. Gross, B. (1953). Mathematical structure of the theories of viscoelasticity. Paris: Hermann & Cie.

    Google Scholar 

  170. Gunasekaran, S., & Mehmet Ak, M. (2003). Cheese rheology and texture. Boca Raton, FL: CRC Press.

    Google Scholar 

  171. Gurtin, M. E., & Sternberg, E. (1962). On the linear theory of viscoelasticity. Archive for Rational Mechanics and Analysis, 11, 291–356.

    Article  Google Scholar 

  172. Hilton, H. H. (1964). An introduction to viscoelastic analysis. In E. Baer (Ed.), Engineering design for plastics (pp. 199–276). New York: Reinhold Publishing Corp.

    Google Scholar 

  173. Hilton, H. H., & Dong, S. B. (1964). An analogy for anisotropic, nonhomogeneous, linear viscoelasticity including thermal stresses (Development in mechanics, pp. 58–73). New York: Pergamon Press.

    Google Scholar 

  174. Hunter, S. C. (1960). Viscoelastic waves. Progress in Solid Mechanics, 1, 3–57.

    Google Scholar 

  175. Lakes, R. S. (1998). Viscoelastic solids. Boca Rotan: CRC Press.

    Google Scholar 

  176. Lakes, R. S. (2009). Viscoelastic materials. New York: Cambridge University Press.

    Book  Google Scholar 

  177. Lazan, B. J. (1968). Damping of materials and members in structural mechanics. Oxford: Pergamon Press.

    Google Scholar 

  178. Le Tallec, P. (1990). Numerical analysis of viscoelastic problems. Berlin: Springer.

    Google Scholar 

  179. Levi, F., & Pizzetti, G. (1951). Fluage, Plasticité, Précontrainte. Paris: Dunod.

    Google Scholar 

  180. Lockett, F. J. (1972). Nonlinear viscoelastic solids. London: Academic.

    Google Scholar 

  181. Lodge, A. S., Renardy, M., & Nohel, J. A. (Eds.). (1985). Viscoelasticity and rheology. New York: Academic.

    Google Scholar 

  182. Mainardi, F. (2010). Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models. London: Imperial College Press.

    Book  Google Scholar 

  183. Marques, S. P. C., & Creus, G. J. (2012). Computational viscoelasticity. Berlin: Springer.

    Book  Google Scholar 

  184. Nashif, A. D., Jones, D. I. G., & Henderson, J. P. (1985). Vibration damping. New York: John Wiley & Sons.

    Google Scholar 

  185. Pipkin, A. C. (1972). Lectures on viscoelasticity theory. Berlin: Springer.

    Book  Google Scholar 

  186. Renardy, M., Hrusa, W. J., & Nohel, J. A. (1987). Mathematical problems in viscoelasticity. Burnt Mill: Longmans Scientific and Technical Press.

    Google Scholar 

  187. Roland, C. M. (2011). Viscoelastic behavior of rubbery materials. New York: Oxford University Press.

    Book  Google Scholar 

  188. Salençon, J. (1983). Viscoélasticité. Paris: Presses ENPC.

    Google Scholar 

  189. Schowalter, W. R. (1978). Mechanics of non-Newtonian fluids. Oxford: Pergamon.

    Google Scholar 

  190. Scott-Blair, G. W. (1949). Survey of general and applied rheology. London: I. Pitman and Son.

    Google Scholar 

  191. Shaw, M. T., & MacKnight, W. J. (2005). Introduction to polymer viscoelasticity (3rd ed.). Hoboken, NJ: Wiley-Interscience.

    Book  Google Scholar 

  192. Tschoegl, N. W. (1989). The phenomenological theory of linear viscoelastic behavior: An introduction. New York: Springer.

    Book  Google Scholar 

  193. Wineman, A. S., & Rajakopal, K. R. (2000). Mechanical response of polymers—An introduction. Cambridge: New York.

    Google Scholar 

  194. Zener, C. (1948). Elasticity and anelasticity of metals. Chicago: University of Chicago Press.

    Google Scholar 

  195. Allen, D. H., & Haisler, W. E. (1985). Introduction to aerospace analysis. New York: John Wiley & Sons.

    Google Scholar 

  196. Shanley, F. R., & Ryder, E. I. (1937). Stress ratios: The answer to the combined loading problem. Aviation, 36, 28–29, 43, 66, 69–70.

    Google Scholar 

  197. Lambros, J., Santare, M. H., Li, H., & Sapna, G. H. (1999). A novel technique for the fabrication of laboratory scale model functionally graded materials. Experimental Mechanics, 39, 184–190.

    Article  Google Scholar 

  198. Asiedu, Y., & Gu, P. (1998). State of the art review. International Journal of Production Research, 36, 37–41.

    Article  Google Scholar 

  199. Xu, Y., Erkoyuncu, J. A., Bankole, O., Goh, Y. M., Cheung, W. M., Baguley, P., et al. (2012). Cost engineering for manufacturing: Current and future research. International Journal of Computer Integrated Manufacturing, 25, 300–314.

    Article  Google Scholar 

  200. Wei, W., & Hansen, M. (2005). Impact of aircraft size and seat availability on airlines’ demand and market share in duopoly markets. Transportation Research Part E: Logistics and Transportation Review, 41, 315–327.

    Article  Google Scholar 

  201. Inman, R. R. (1995). Shape characteristics of cost curves involving multiple shifts in automotive assembly plants. The Engineering Economist, 41(1), 53–67.

    Article  Google Scholar 

  202. Scanlan, J., Hill, T., & Marsh, R. (2002). Cost modeling for aircraft design optimization. Journal of Engineering Design, 13, 37–41.

    Article  Google Scholar 

  203. Layer, A., Brinke, E. T., Houten, F. V., Kals, H., & Haasis, S. (2002). Recent and future trends in cost estimation. International Journal of Computer Integrated Manufacturing, 15(6), 499–510.

    Article  Google Scholar 

  204. Collopy, P. D., & Eames, D. J. H. (2001). Aerospace manufacturing cost prediction form a measure of part definition information (SAE Technical Paper 001-01-3004).

    Google Scholar 

  205. Hackman, S. T. (2008). Production Economics Integrating the Microeconomic and Engineering Perspectives. Berlin: Springer.

    Google Scholar 

  206. Alchian, A. (1949) “An airframe production function,” Project RAND Paper P-108.

    Google Scholar 

  207. Minkowski, H. (1912). Geometrie der Zahlen. Leibzig: Teubner.

    Google Scholar 

  208. Shaikh, A. (1987). Humbug production function. In J. Eatwell, M. Milgate, & P. Newman (Eds.), The new Palgrave: A dictionary of economics (pp. 690–692). London: MacMillan Press.

    Google Scholar 

  209. Simon, H. A. (1979). On parsimonious explanations of production relations. The Scandinavian Journal of Economics, 81(4), 459–474.

    Article  Google Scholar 

  210. Eiteman, W. J., & Guthrie, G. E. (1952). The shape of the average cost curve. The American Economic Review, 42, 832–838.

    Google Scholar 

  211. Arrow, K. J., Chenery, H. B., Minhas, B. S., & Solow, R. M. (1961). Capital-labor substitution and economic efficiency. The Review of Economics and Statistics, 43, 225–250.

    Article  Google Scholar 

  212. Diewert, W. E. (1971). An application of the Shephard duality theorem: a generalized Leontief production function. Journal of Political Economy, 79, 481–507.

    Article  Google Scholar 

  213. Christensen, L. R., Jorgenson, D. W., & Lau, L. J. (1973). Transcendental logarithmic production frontiers. The Review of Economics and Statistics, 45, 28–45.

    Article  Google Scholar 

  214. Lau, L. J. (1986). Functional forms in econometric model building. Handbook of econometric, 3, 1515–1566.

    Article  Google Scholar 

  215. Curran, R., Kundu, A. K., Wright, J. M., Crosby, S., Price, M., Raghunathan, S., et al. (2006). Modeling of aircraft manufacturing cost at the concept stage. The International Journal of Advanced Manufacturing Technology, 31(3-4), 407–420.

    Article  Google Scholar 

  216. Velicki, A., & Thrash, P. (2008). Advanced structural concept development using stitched composites. In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Paper AAIAA 2008-2329. Reston, VA.

    Google Scholar 

  217. Yovanof, N. P., Velicki, A., & Li, V. (2009). Advanced structural stability analysis of a noncircular, BWB–shaped vehicle. In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Paper AIAA 2009-2452. Reston, VA.

    Google Scholar 

  218. Velicki, A., Thrash, P., & Jegley, D. (2009). Airframe development for the hybrid wing body aircraft. In 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Paper AIAA 2009-932. Reston, VA.

    Google Scholar 

  219. Hilton, H. H. (2012). Designer materials for controlling thermally excited viscoelastic lifting surface flutter. In Proceedings AIAA AFM Conference, AIAA Paper 2012-4952. Minneapolis, MN.

    Google Scholar 

  220. Hamming, R. W. (1962). Numerical methods for scientists and engineers. New York: Dover.

    Google Scholar 

Download references

Acknowledgement

Support by grants from the Private Sector Program Division (PSP) of the National Center for Supercomputing Applications (NCSA) and from the Department of Aerospace Engineering both at the University of Illinois at Urbana-Champaign (UIUC), and from the Economics Department at the New School for Social Research is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry H. Hilton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hilton, H.H., D’Urso, S.J., Wiener, N. (2017). Designer Systems of Systems: A Rational Integrated Approach of System Engineering to Tailored Aerodynamics, Aeroelasticity, Aero-viscoelasticity, Stability, Control, Geometry, Materials, Structures, Propulsion, Performance, Sizing, Weight, Cost. In: Kahlen, J., Flumerfelt, S., Alves, A. (eds) Transdisciplinary Perspectives on Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-38756-7_3

Download citation

Publish with us

Policies and ethics