Skip to main content

Rogue Waves in Random Sea States: An Experimental Perspective

  • Chapter
  • First Online:
Book cover Rogue and Shock Waves in Nonlinear Dispersive Media

Part of the book series: Lecture Notes in Physics ((LNP,volume 926))

Abstract

Despite being rare events, rogue waves have been recorded in the ocean. Here the current knowledge on wave statistics and the probability of occurrence of rogue waves is revisited from an experimental perspective. Starting from the instability of uniform wave packets to side band perturbations, the most accredited generating mechanism, the appearance of rogue waves in random wave fields is discussed. As an initial condition, unidirectional wave propagation is considered. Under these circumstances, wave instability results in a substantial deviation from Gaussian statistics. Directional spreading of wave energy, which characterizes realistic oceanic waves, attenuates the effect of wave instability weakening non-Gaussian properties. It is demonstrated, however, that the interaction between waves and an opposing current can sometimes act as a catalyst for modulational instability. This triggers the formation of rogues waves even in directional sea states, where rogue waves are the least expected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dysthe, K., Krogstad, H.E., Müller, P.: Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287–310 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528 (2), 47–89 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  3. Guedes, C., Soares, Cherneva, Z., Antão, E.M.: Abnormal waves during Hurricane Camille. J. Geophys. Res. (Oceans) 109 (C8) (2004)

    Google Scholar 

  4. Haver, S., Andersen, J.: Freak waves: rare realizations of a typical population or typical realizations of a rare population? In: Proceedings of 10th International Offshore and Polar Engineering (ISOPE) Conference, Seattle (2000)

    Google Scholar 

  5. Kharif, C., Pelinovsky, E.: Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B/Fluid 21 (5), 561–577 (2002)

    Article  MATH  Google Scholar 

  6. de Pinho, U.F., Liu, P.C., Ribeiro, C.E.P.: Freak waves at Campos basin, Brazil. Geofizika 21, 53–67 (2004)

    Google Scholar 

  7. Magnusson, A.K., Donelan, M.A.: The Andrea wave characteristics of a measured North Sea rogue wave. J. Offshore Mech. Arct. Eng 135 (3), 031108 (2013)

    Article  Google Scholar 

  8. Lavrenov, I.: The wave energy concentration at the Agulhas Current of South Africa. Nat. Hazard 17, 117–127 (1998)

    Article  Google Scholar 

  9. Hauser, D., Kahma, K.K., Krogstad, H.E., Lehner, S., Monbaliu, J., Wyatt, W.L. (eds.): Measuring and Analysing the Directional Spectrum of Ocean Waves. Cost Office, Brussels (2005)

    Google Scholar 

  10. NORSOK. Standard N-003: Action and action effects. Norwegian Technology Standardization, Oslo (2007)

    Google Scholar 

  11. Ochi, M.K.: Ocean Waves: The Stochastic Approach. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  12. Whitham, G.: Linear and Nonlinear Waves. Wiley Interscience, New York (1974)

    MATH  Google Scholar 

  13. Hasselmann, K.: On the non–linear energy transfer in a gravity–wave spectrum. Part 1: General theory. J. Fluid Mech. 12, 481–500 (1962)

    Google Scholar 

  14. Forristall, G.: Wave crests distributions: observations and second-order theory. J. Phys. Ocean. 30, 1931–1943 (2000)

    Article  ADS  Google Scholar 

  15. Longuet-Higgins, M.: The effect of non-linearities on statistical distribution in the theory of sea waves. J. Fluid Mech. 17, 459–480 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Sharma, N., Dean, R.: Second-order directional seas and associated wave forces. Soc. Petrol. Eng. J. 4, 129–140 (1981)

    Article  Google Scholar 

  17. Dalzell, J.: A note on finite depth second–order wave–wave interactions. Appl. Ocean Res. 21, 105–111 (1999)

    Article  Google Scholar 

  18. Toffoli, A., Onorato, M., Babanin, A.V., Bitner-Gregersen, E., Osborne, A.R., Monbaliu, J.: Second–order theory and set–up in surface gravity waves: a comparison with experimental data. J. Phys. Ocean. 37, 2726–2739 (2007)

    Article  ADS  Google Scholar 

  19. Arhan, M., Plaisted, R.O.: Non–linear deformation of sea–wave profiles in intermediate and shallow water. Oceanol. Acta 4 (2), 107–115 (1981)

    Google Scholar 

  20. Tayfun, M.A.: Narrow–band nonlinear sea waves. J. Geophys. Res. 85 (C3), 1548–1552 (1980)

    Article  ADS  Google Scholar 

  21. Toffoli, A., Bitner-Gregersen, E., Onorato, M., Babanin, A.V.: Wave crest and trough distributions in a broad–banded directional wave field. Ocean Eng. 35, 1784–1792 (2008)

    Article  Google Scholar 

  22. Bitner-Gregersen, E.M., Bhattacharya, S.K., Chatjigeorgiou, I.K., Eames, I., Ellermann, K., Ewans, K., Hermanski, G., Johnson, M.C., Ma, N., Maisondieu, C., Nilva, A., Rychlik, I., Waseda, T.: Recent developments of ocean environmental description with focus on uncertainties. Ocean Eng. 86, 26–46 (2014)

    Article  Google Scholar 

  23. Janssen, P.A.E.M.: Nonlinear four–wave interaction and freak waves. J. Phys. Ocean. 33 (4), 863–884 (2003)

    Article  ADS  Google Scholar 

  24. Onorato, M., Osborne, A., Serio, M., Bertone, S.: Freak wave in random oceanic sea states. Phys. Rev. Lett. 86 (25), 5831–5834 (2001)

    Article  ADS  Google Scholar 

  25. Fedele, F.: On the kurtosis of deep-water gravity waves. J. Fluid Mech. 782, 25–36 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Zakharov, V., Ostrovsky, L.: Modulation instability: the beginning. Physica D 238 (5), 540–548 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Tulin, M.P., Waseda, T.: Laboratory observation of wave group evolution, including breaking effects. J. Fluid Mech. 378, 197–232 (1999)

    Article  ADS  MATH  Google Scholar 

  28. Alber, I.E.: The effects of randomness on the stability of two-dimensional surface wavetrains. Proc. R. Soc. Lond. A 363 (1715), 525–546 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Onorato, M., Cavaleri, L., Fouques, S., Gramstad, O., Janssen, P.A.E.M., Monbaliu, J., Osborne, A.R., Pakozdi, C., Serio, M., Stansberg, C., Toffoli, A., Trulsen, K.: Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a 3d wave basin. J. Fluid Mech. 627, 235–257 (2009)

    Article  ADS  MATH  Google Scholar 

  30. Onorato, M., Waseda, T., Toffoli, A., Cavaleri, L., Gramstad, O., Janssen, P.A.E.M., Kinoshita, T., Monbaliu, J., Mori, N., Osborne, A.R., Serio, M., Stansberg, C., Tamura, H., Trulsen, K.: Statistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events. Phys. Rev. Lett. 102, 114502 (2009)

    Article  ADS  Google Scholar 

  31. Waseda, T., Kinoshita, T., Tamura, H.: Evolution of a random directional wave and freak wave occurrence. J. Phys. Oceanogr. 39, 621–639 (2009)

    Article  ADS  Google Scholar 

  32. Cherneva, Z., Tayfun, M.A., Soares, C.G.: Statistics of nonlinear waves generated in an offshore wave basin. J. Geophys. Res. 114 (C8) (2009)

    Google Scholar 

  33. Shemer, L., Sergeeva, A.: An experimental study of spatial evolution of statistical parameters in a unidirectional narrow-banded random wavefield. J. Geophys. Res. 114 (C1) (2009)

    Google Scholar 

  34. Katsardi, V., De Lutio, L., Swan, C.: An experimental study of large waves in intermediate and shallow water depths. Part I: wave height and crest height statistics. Coast. Eng. 73, 43–57 (2013)

    Google Scholar 

  35. Latheef, M., Swan, C.: A laboratory study of wave crest statistics and the role of directional spreading. Proc. R. Soc. A 469 (2013)

    Google Scholar 

  36. Heller, E.J., Kaplan, L., Dahlen, A.: Refraction of a gaussian seaway. J. Geophys. Res. 113 (C9) (2008)

    Google Scholar 

  37. Toffoli, A., Waseda, T., Houtani, H., Cavaleri, L., Greaves, D., Onorato, M.: Rogue waves in opposing currents: an experimental study on deterministic and stochastic wave trains. J. Fluid Mech. 769, 277–297 (2015)

    Article  ADS  Google Scholar 

  38. Lavrenov, I., Porubov, A.V.: Three reasons for freak wave generation in the non-uniform current. Eur. J. Mech. B/Fluids 25, 574–585 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. White, B.S., Fornberg, B.: On the chance of freak waves at the sea. J. Fluid Mech. 255, 113–138 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Longuet-Higgins, M.S., Stewart, R.W.: The changes in amplitude of short gravity waves on steady non-uniform currents. J. Fluid Mech. 10 (4), 529–549 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Peregrine, D.H.: Interaction of water waves and current. In: Chia-Shun Yih (ed.) Advances in Applied Mechanics, pp. 9–117. Elsevier (1976)

    Google Scholar 

  42. Chawla, A.: An experimental study on the dynamics of wave blocking and breaking on opposing currents. Ph.D. thesis, University of Delaware (2000)

    Google Scholar 

  43. Gerber, M.: The Benjamin–Feir instability of a deep water stokes wavepacket in the presence of a non-uniform medium. J. Fluid Mech. 176, 311–332 (1987)

    Article  ADS  MATH  Google Scholar 

  44. Lai, R.J., Long, S.R., Huang, N.: Laboratory studies of wave-current interaction: kinematics of the strong interaction. J. Geophysic. Res. 94 (C11), 16201–16214 (1989)

    Article  ADS  Google Scholar 

  45. Smith, R., Giant waves. J. Fluid Mech. 77 (3), 417–431 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Hjelmervik, K.B., Trulsen, K.: Freak wave statistics on collinear currents. J. Fluid Mech. 637, 267–284 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Onorato, M., Proment, D., Toffoli, A.: Triggering rogue waves in opposing currents. Phys. Rev. Lett. 107, 184502 (2011)

    Article  ADS  Google Scholar 

  48. Toffoli, A., Cavaleri, L., Babanin, A.V., Benoit, M., Bitner-Gregersen, E.M., Monbaliu, J., Onorato, M., Osborne, A.R., Stansberg, C.T.: Occurrence of extreme waves in three-dimensional mechanically generated wave fields propagating over an oblique current. Nat. Hazards Earth Syst. Sci. 11, 1–9 (2011)

    Article  Google Scholar 

  49. Toffoli, A., Waseda, T., Houtani, H., Kinoshita, T., Collins, K., Proment, D., Onorato, M.: Excitation of rogue waves in a variable medium: an experimental study on the interaction of water waves and currents. Phys. Rev. E 87, 051201 (2013)

    Article  ADS  Google Scholar 

  50. Komen, G., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, H., Janssen, P.: Dynamics and Modeling of Ocean Waves. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  51. Onorato, M., Osborne, A., Serio, M., Cavaleri, L., Brandini, C., Stansberg, C.: Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves. Eur. J. Mech. B/Fluids 25, 586–601 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Goda, Y.: Random seas and design on marine structures. Advanced Series on Ocean Engineering, vol. 15. World Scientific, Singapore (2000)

    Google Scholar 

  53. Janssen, P., Bidlot, J.-R.: On the extension of the freak wave warning system and its verification. ECMWF Technical Memorandum No. 588 (2009)

    Google Scholar 

  54. Toffoli, A., Babanin, A.V., Onorato, M., Waseda, T.: Maximum steepness of oceanic waves: field and laboratory experiments. Geophys. Res. Lett. 37, L05603 (2010)

    Article  ADS  Google Scholar 

  55. Dysthe, K.B., Trulsen, K., Krogstad, H., Socquet-Juglard, H.: Evolution of a narrow–band spectrum of random surface gravity waves. J. Fluid Mech. 478, 1–10 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Socquet-Juglard, H., Dysthe, K., Trulsen, K., Krogstad, H., Liu, J.: Probability distributions of surface gravity waves during spectral changes. J. Fluid Mech. 542, 195–216 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Onorato, M., Osborne, A.R., Serio, M., Resio, D., Puskarev, A., Zakharov, V.E., Brandini, C.: Freely decaying weak turbulence for sea surface gravity waves. Phys. Rev. Lett. 89 (4), 144501 (2002)

    Article  ADS  Google Scholar 

  58. Yuen, H.C., Lake, B.M.: Nonlinear dynamics of deep-water gravity waves. Adv. Appl. Mech. 22, 20–228 (1982)

    MathSciNet  MATH  Google Scholar 

  59. Dysthe, K.B., Trulsen, K., Krogstad, H.E., Socquet-Juglard, H.: Evolution of a narrow-band spectrum of random surface gravity waves. J. Fluid Mech. 478, 1–10 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Dias, F., Kharif, C.: Nonlinear gravity and capillary-gravity waves. Annu. Rev. Fluid Mech. 31 (1), 301–346 (1999)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The experimental work was supported by the European Community’s Sixth Framework Programme through the grant to the budget of the Integrated Infrastructure Initiative HYDROLAB III, Contract no. 022441 (RII3), and the School of Marine Science and Engineering at Plymouth University. The author also acknowledges support from the Grants-in-Aid for Scientific Research of the Japan Society for the Promotion of Science (JSPS), the International Science Linkages (ISL) Program of the Australian Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Toffoli .

Editor information

Editors and Affiliations

Appendix

Appendix

The analytical form of the coupling coefficients K ijlm + and K ijlm of the second order theory are as follows:

$$ \displaystyle\begin{array}{rcl} K_{ijlm}^{+} = [D_{ ijlm}^{+} - (k_{ i}k_{j}\cos (\theta _{l} -\theta _{m}) - R_{i}R_{j})](R_{i}R_{j})^{-1/2} + (R_{ i} + R_{j})& &{}\end{array}$$
(4)
$$\displaystyle\begin{array}{rcl} K_{ijlm}^{-} = [D_{ ijlm}^{-}- ((k_{ i}k_{j}\cos (\theta _{l} -\theta _{m}) + R_{i}R_{j})](R_{i}R_{j})^{-1/2} + (R_{ i} + R_{j})& &{}\end{array}$$
(5)

where

$$\displaystyle\begin{array}{rcl} D_{ijlm}^{+}& =& \frac{(\sqrt{R_{i}} + \sqrt{R_{j}})\{\sqrt{R_{i}}(k_{j}^{2} - R_{ j}^{2}) + \sqrt{R_{ j}}(k_{i}^{2} - R_{ i}^{2})\}} {(\sqrt{R_{i}} + \sqrt{R_{j}})^{2} - k_{ijlm}^{+}\tanh (k_{ijlm}^{+}h)} + \\ & & \frac{2(\sqrt{R_{i}} + \sqrt{R_{j}})^{2}(k_{i}k_{j}\cos (\theta _{l} -\theta _{m}) - R_{i}R_{j})} {(\sqrt{R_{i}} + \sqrt{R_{j}})^{2} - k_{ijlm}^{+}\tanh (k_{ijlm}^{+}h)} {}\end{array}$$
(6)
$$\displaystyle\begin{array}{rcl} D_{ijlm}^{-}& =& \frac{(\sqrt{R_{i}} -\sqrt{R_{j}})\{\sqrt{R_{j}}(k_{i}^{2} - R_{ i}^{2}) -\sqrt{R_{ i}}(k_{j}^{2} - R_{ j}^{2})\}} {(\sqrt{R_{i}} -\sqrt{R_{j}})^{2} - k_{ijlm}^{-}\tanh (k_{ijlm}^{-}h)} + \\ & & \frac{2(\sqrt{R_{i}} -\sqrt{R_{j}})^{2}(k_{i}k_{j}\cos (\theta _{l} -\theta _{m}) + R_{i}R_{j})} {(\sqrt{R_{i}} -\sqrt{R_{j}})^{2} - k_{ijlm}^{-}\tanh (k_{ijlm}^{-}h)} {}\end{array}$$
(7)
$$\displaystyle\begin{array}{rcl} k_{ijlm}^{-}& =& \sqrt{k_{ i}^{2} + k_{j}^{2} - 2k_{i}k_{j}\cos (\theta _{l} -\theta _{m})}{}\end{array}$$
(8)
$$\displaystyle\begin{array}{rcl} k_{ijlm}^{+}& =& \sqrt{k_{ i}^{2} + k_{j}^{2} + 2k_{i}k_{j}\cos (\theta _{l} -\theta _{m})}{}\end{array}$$
(9)
$$\displaystyle\begin{array}{rcl} R_{i} =\omega _{ i}^{2}/g& &{}\end{array}$$
(10)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Toffoli, A. (2016). Rogue Waves in Random Sea States: An Experimental Perspective. In: Onorato, M., Resitori, S., Baronio, F. (eds) Rogue and Shock Waves in Nonlinear Dispersive Media. Lecture Notes in Physics, vol 926. Springer, Cham. https://doi.org/10.1007/978-3-319-39214-1_7

Download citation

Publish with us

Policies and ethics