Skip to main content

Regulation of Megakaryocyte and Platelet Survival

  • Chapter
  • First Online:
Book cover Molecular and Cellular Biology of Platelet Formation
  • 1033 Accesses

Abstract

Platelets play vital roles in hemostasis, wound healing, and a range of other processes [1]. Their number is tightly controlled within narrow physiological ranges. This occurs through a dynamic balance between platelet production and consumption/clearance rates, so as to ensure that the total platelet mass remains constant. Megakaryocytes in the bone marrow produce around 100 billion platelets per day. In a healthy individual, the majority of platelets are not consumed by hemostatic processes. It is therefore imperative that platelet lifespan is strictly regulated. Recent work has demonstrated that the survival of megakaryocytes and platelets is controlled by programmed cell death, apoptosis [2]. Both cell types possess a classical Bak- and Bax-mediated intrinsic, mitochondrial, apoptosis pathway that must be restrained in order for them to develop and survive. In addition, recent work has revealed that the glycosylation state of platelet surface proteins is an indicator of platelet age and that aged, desialylated platelets stimulate platelet production [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Weyrich AS (2014) Platelets: more than a sack of glue. Hematol Educ Prog Am Soc Hematol Am Soc Hematol Educ Prog 2014(1):400–403

    Google Scholar 

  2. Kile BT (2014) The role of apoptosis in megakaryocytes and platelets. Br J Haematol 165:217–226

    Article  CAS  PubMed  Google Scholar 

  3. Grozovsky R, Begonja AJ, Liu K, Visner G, Hartwig JH, Falet H et al (2015) The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling. Nat Med 21(1):47–54

    Article  CAS  PubMed  Google Scholar 

  4. Michel M (2013) Immune thrombocytopenia nomenclature, consensus reports, and guidelines: what are the consequences for daily practice and clinical research? Semin Hematol 50(Suppl 1):S50–S54

    Article  PubMed  Google Scholar 

  5. Kuter DJ (2011) Romiplostim. Cancer Treat Res 157:267–288

    Article  CAS  PubMed  Google Scholar 

  6. Schafer AI (2001) Thrombocytosis and thrombocythemia. Blood Rev 15(4):159–166

    Article  CAS  PubMed  Google Scholar 

  7. Hoffmeister KM, Josefsson EC, Isaac NA, Clausen H, Hartwig JH, Stossel TP (2003) Glycosylation restores survival of chilled blood platelets. Science (New York, NY) 301(5639):1531–1534

    Article  CAS  Google Scholar 

  8. Li J, Xia Y, Bertino AM, Coburn JP, Kuter DJ (2000) The mechanism of apoptosis in human platelets during storage. Transfusion 40(11):1320–1329

    Article  CAS  PubMed  Google Scholar 

  9. Cazenave JP, Isola H, Waller C, Mendel I, Kientz D, Laforet M et al (2011) Use of additive solutions and pathogen inactivation treatment of platelet components in a regional blood center: impact on patient outcomes and component utilization during a 3-year period. Transfusion 51(3):622–629

    Article  PubMed  Google Scholar 

  10. Ohto H, Nollet KE (2011) Overview on platelet preservation: better controls over storage lesion. Transfus Apher Sci Off J World Apher Assoc Off J Eur Soc Haemapheresis 44(3):321–325

    Google Scholar 

  11. Bertino AM, Qi XQ, Li J, Xia Y, Kuter DJ (2003) Apoptotic markers are increased in platelets stored at 37 degrees C. Transfusion 43(7):857–866

    Article  CAS  PubMed  Google Scholar 

  12. Hartley PS, Savill J, Brown SB (2006) The death of human platelets during incubation in citrated plasma involves shedding of CD42b and aggregation of dead platelets. Thromb Haemost 95(1):100–106

    CAS  PubMed  Google Scholar 

  13. Cohen JA, Leeksma CH (1956) Determination of the life span of human blood platelets using labelled diisopropylfluorophosphonate. J Clin Invest 35(9):964–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hirsch EO, Gardner FH (1952) The transfusion of human blood platelets with a note on the transfusion of granulocytes. J Lab Clin Med 39(4):556–569

    CAS  PubMed  Google Scholar 

  15. Leeksma CH, Cohen JA (1955) The life-span of thrombocytes determined with radioactive DFP. Ned Tijdschr Geneeskd 99(47):3563–3565

    CAS  PubMed  Google Scholar 

  16. Slichter SJ, Bolgiano D, Corson J, Jones MK, Christoffel T (2010) Extended storage of platelet-rich plasma-prepared platelet concentrates in plasma or plasmalyte. Transfusion 50(10):2199–2209

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ault KA, Knowles C (1995) In vivo biotinylation demonstrates that reticulated platelets are the youngest platelets in circulation. Exp Hematol 23(9):996–1001

    CAS  PubMed  Google Scholar 

  18. Dale GL, Friese P, Hynes LA, Burstein SA (1995) Demonstration that thiazole-orange-positive platelets in the dog are less than 24 hours old. Blood 85(7):1822–1825

    CAS  PubMed  Google Scholar 

  19. Beer JH, Buchi L, Steiner B (1994) Glycocalicin: a new assay – the normal plasma levels and its potential usefulness in selected diseases. Blood 83(3):691–702

    CAS  PubMed  Google Scholar 

  20. Kurata Y, Hayashi S, Kiyoi T, Kosugi S, Kashiwagi H, Honda S et al (2001) Diagnostic value of tests for reticulated platelets, plasma glycocalicin, and thrombopoietin levels for discriminating between hyperdestructive and hypoplastic thrombocytopenia. Am J Clin Pathol 115(5):656–664

    Article  CAS  PubMed  Google Scholar 

  21. Michelson AD, Barnard MR, Hechtman HB, MacGregor H, Connolly RJ, Loscalzo J et al (1996) In vivo tracking of platelets: circulating degranulated platelets rapidly lose surface P-selectin but continue to circulate and function. Proc Natl Acad Sci U S A 93(21):11877–11882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baker GR, Sullam PM, Levin J (1997) A simple, fluorescent method to internally label platelets suitable for physiological measurements. Am J Hematol 56(1):17–25

    Article  CAS  PubMed  Google Scholar 

  23. Pleines I, Eckly A, Elvers M, Hagedorn I, Eliautou S, Bender M et al (2010) Multiple alterations of platelet functions dominated by increased secretion in mice lacking Cdc42 in platelets. Blood 115(16):3364–3373

    Article  CAS  PubMed  Google Scholar 

  24. Josefsson EC, White MJ, Dowling MR, Kile BT (2012) Platelet life span and apoptosis. Methods Mol Biol 788:59–71

    Article  CAS  PubMed  Google Scholar 

  25. Coupland LA, Cromer D, Davenport MP, Parish CR (2010) A novel fluorescent-based assay reveals that thrombopoietin signaling and Bcl-X(L) influence, respectively, platelet and erythrocyte lifespans. Exp Hematol 38(6):453–461 e451

    Article  CAS  PubMed  Google Scholar 

  26. Debrincat MA, Josefsson EC, James C, Henley KJ, Ellis S, Lebois M et al (2012) Mcl-1 and Bcl-x(L) coordinately regulate megakaryocyte survival. Blood 119(24):5850–5858

    Article  CAS  PubMed  Google Scholar 

  27. Josefsson EC, Burnett DL, Lebois M, Debrincat MA, White MJ, Henley KJ et al (2014) Platelet production proceeds independently of the intrinsic and extrinsic apoptosis pathways. Nat Commun 5:3455

    Article  PubMed  CAS  Google Scholar 

  28. Josefsson EC, James C, Henley KJ, Debrincat MA, Rogers KL, Dowling MR et al (2011) Megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained to survive and produce platelets. J Exp Med 208(10):2017–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kodama T, Hikita H, Kawaguchi T, Shigekawa M, Shimizu S, Hayashi Y et al (2012) Mcl-1 and Bcl-xL regulate Bak/Bax-dependent apoptosis of the megakaryocytic lineage at multistages. Cell Death Differ 19(11):1856–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kodama T, Takehara T, Hikita H, Shimizu S, Shigekawa M, Li W et al (2011) BH3-only activator proteins Bid and Bim are dispensable for Bak/Bax-dependent thrombocyte apoptosis induced by Bcl-xL deficiency: molecular requisites for the mitochondrial pathway to apoptosis in platelets. J Biol Chem 286(16):13905–13913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S et al (2007) Programmed anuclear cell death delimits platelet life span. Cell 128(6):1173–1186

    Article  CAS  PubMed  Google Scholar 

  32. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9(1):47–59

    Article  CAS  PubMed  Google Scholar 

  33. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR et al (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17(4):525–535

    Article  CAS  PubMed  Google Scholar 

  35. Ren D, Tu HC, Kim H, Wang GX, Bean GR, Takeuchi O et al (2010) BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science (New York, NY) 330(6009):1390–1393

    Article  CAS  Google Scholar 

  36. Villunger A, Labi V, Bouillet P, Adams J, Strasser A (2011) Can the analysis of BH3-only protein knockout mice clarify the issue of ‘direct versus indirect’ activation of Bax and Bak? Cell Death Differ 18(10):1545–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE et al (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science (New York, NY) 315(5813):856–859

    Article  CAS  Google Scholar 

  38. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17(6):1675–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jost PJ, Grabow S, Gray D, McKenzie MD, Nachbur U, Huang DC et al (2009) XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460(7258):1035–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schoenwaelder SM, Yuan Y, Josefsson EC, White MJ, Yao Y, Mason KD et al (2009) Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function. Blood 114(3):663–666

    Article  CAS  PubMed  Google Scholar 

  41. Zhang H, Nimmer PM, Tahir SK, Chen J, Fryer RM, Hahn KR et al (2007) Bcl-2 family proteins are essential for platelet survival. Cell Death Differ 14(5):943–951

    CAS  PubMed  Google Scholar 

  42. Wagner KU, Claudio E, Rucker EB 3rd, Riedlinger G, Broussard C, Schwartzberg PL et al (2000) Conditional deletion of the Bcl-x gene from erythroid cells results in hemolytic anemia and profound splenomegaly. Development (Camb Engl) 127(22):4949–4958

    CAS  Google Scholar 

  43. Kodama T, Takehara T, Hikita H, Shimizu S, Li W, Miyagi T et al (2010) Thrombocytopenia exacerbates cholestasis-induced liver fibrosis in mice. Gastroenterology 138(7):2487–2498, 2498 e2481–2487

    Article  CAS  PubMed  Google Scholar 

  44. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681

    Article  CAS  PubMed  Google Scholar 

  45. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S et al (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68(9):3421–3428

    Article  CAS  PubMed  Google Scholar 

  46. Vogler M, Hamali HA, Sun XM, Bampton ET, Dinsdale D, Snowden RT et al (2011) BCL2/BCL-X(L) inhibition induces apoptosis, disrupts cellular calcium homeostasis, and prevents platelet activation. Blood 117(26):7145–7154

    Article  CAS  PubMed  Google Scholar 

  47. Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL et al (2012) Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol Off J Am Soc Clin Oncol 30(5):488–496

    Article  CAS  Google Scholar 

  48. Schoenwaelder SM, Jarman KE, Gardiner EE, Hua M, Qiao J, White MJ et al (2011) Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood 118(6):1663–1674

    Article  CAS  PubMed  Google Scholar 

  49. Gieger C, Radhakrishnan A, Cvejic A, Tang W, Porcu E, Pistis G et al (2011) New gene functions in megakaryopoiesis and platelet formation. Nature 480(7376):201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oh JH, Kim YK, Moon S, Kim YJ, Kim BJ (2014) Genome-wide association study identifies candidate Loci associated with platelet count in koreans. Genomics Inform 12(4):225–230

    Article  PubMed  PubMed Central  Google Scholar 

  51. Debrincat MA, Pleines I, Lebois M, Lane RM, Holmes ML, Corbin J et al (2015) BCL-2 is dispensable for thrombopoiesis and platelet survival. Cell Death Dis 6:e1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J et al (2013) ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19(2):202–208

    Article  CAS  PubMed  Google Scholar 

  53. Vandenberg CJ, Josefsson EC, Campbell KJ, James C, Lawlor KE, Kile BT et al (2014) Loss of Bak enhances lymphocytosis but does not ameliorate thrombocytopaenia in BCL-2 transgenic mice. Cell Death Differ 21(5):676–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Print CG, Loveland KL, Gibson L, Meehan T, Stylianou A, Wreford N et al (1998) Apoptosis regulator bcl-w is essential for spermatogenesis but appears otherwise redundant. Proc Natl Acad Sci U S A 95(21):12424–12431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ross AJ, Waymire KG, Moss JE, Parlow AF, Skinner MK, Russell LD et al (1998) Testicular degeneration in Bclw-deficient mice. Nat Genet 18(3):251–256

    Article  CAS  PubMed  Google Scholar 

  56. Hamasaki A, Sendo F, Nakayama K, Ishida N, Negishi I, Nakayama K et al (1998) Accelerated neutrophil apoptosis in mice lacking A1-a, a subtype of the bcl-2-related A1 gene. J Exp Med 188(11):1985–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ottina E, Grespi F, Tischner D, Soratroi C, Geley S, Ploner A et al (2012) Targeting antiapoptotic A1/Bfl-1 by in vivo RNAi reveals multiple roles in leukocyte development in mice. Blood 119(25):6032–6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kelly PN, White MJ, Goschnick MW, Fairfax KA, Tarlinton DM, Kinkel SA et al (2010) Individual and overlapping roles of BH3-only proteins Bim and Bad in apoptosis of lymphocytes and platelets and in suppression of thymic lymphoma development. Cell Death Differ 17(10):1655–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu ZJ, Hoffmeister KM, Hu Z, Mager DE, Ait-Oudhia S, Debrincat MA et al (2014) Expansion of the neonatal platelet mass is achieved via an extension of platelet lifespan. Blood 123(22):3381–3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Delbridge AR, Chappaz S, Ritchie ME, Kile BT, Strasser A, Grabow S. (2016) Loss of PUMA (BBC3) does not prevent thrombocytopenia caused by the loss of BCL-XL (BCL2L1). Br J Haematol. doi: 10.1111/bjh.14155. [Epub ahead of print]

    Google Scholar 

  61. Plenchette S, Moutet M, Benguella M, N’Gondara JP, Guigner F, Coffe C et al (2001) Early increase in DcR2 expression and late activation of caspases in the platelet storage lesion. Leukemia 15(10):1572–1581

    Google Scholar 

  62. Vucic D, Dixit VM, Wertz IE (2011) Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol 12(7):439–452

    Article  CAS  PubMed  Google Scholar 

  63. Lien LM, Su CC, Hsu WH, Lu WJ, Chung CL, Yen TL et al (2013) Mechanisms of andrographolide-induced platelet apoptosis in human platelets: regulatory roles of the extrinsic apoptotic pathway. Phytother Res PTR 27(11):1671–1677

    Article  CAS  PubMed  Google Scholar 

  64. Mutlu A, Gyulkhandanyan AV, Freedman J, Leytin V (2012) Activation of caspases-9, -3 and -8 in human platelets triggered by BH3-only mimetic ABT-737 and calcium ionophore A23187: caspase-8 is activated via bypass of the death receptors. Br J Haematol 159(5):565–571

    CAS  PubMed  Google Scholar 

  65. van Delft MF, Smith DP, Lahoud MH, Huang DC, Adams JM (2010) Apoptosis and non-inflammatory phagocytosis can be induced by mitochondrial damage without caspases. Cell Death Differ 17(5):821–832

    Article  PubMed  CAS  Google Scholar 

  66. White MJ, Schoenwaelder SM, Josefsson EC, Jarman KE, Henley KJ, James C et al (2012) Caspase-9 mediates the apoptotic death of megakaryocytes and platelets, but is dispensable for their generation and function. Blood 119(18):4283–4290

    Article  CAS  PubMed  Google Scholar 

  67. White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ et al (2014) Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159(7):1549–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bevers EM, Comfurius P, Zwaal RF (1983) Changes in membrane phospholipid distribution during platelet activation. Biochim Biophys Acta 736(1):57–66

    Article  CAS  PubMed  Google Scholar 

  69. Dale GL (2005) Coated-platelets: an emerging component of the procoagulant response. J Thromb Haemost JTH 3(10):2185–2192

    Article  CAS  PubMed  Google Scholar 

  70. Kulkarni S, Jackson SP (2004) Platelet factor XIII and calpain negatively regulate integrin alphaIIbbeta3 adhesive function and thrombus growth. J Biol Chem 279(29):30697–30706

    Article  CAS  PubMed  Google Scholar 

  71. Bevers EM, Williamson PL (2010) Phospholipid scramblase: an update. FEBS Lett 584(13):2724–2730

    Article  CAS  PubMed  Google Scholar 

  72. Sanyal S, Menon AK (2009) Flipping lipids: why an’ what’s the reason for? ACS Chem Biol 4(11):895–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Keuren JF, Wielders SJ, Ulrichts H, Hackeng T, Heemskerk JW, Deckmyn H et al (2005) Synergistic effect of thrombin on collagen-induced platelet procoagulant activity is mediated through protease-activated receptor-1. Arterioscler Thromb Vasc Biol 25(7):1499–1505

    Article  CAS  PubMed  Google Scholar 

  74. Braun A, Vogtle T, Varga-Szabo D, Nieswandt B (2011) STIM and Orai in hemostasis and thrombosis. Front Biosci 16:2144–2160

    Article  CAS  Google Scholar 

  75. Gilio K, van Kruchten R, Braun A, Berna-Erro A, Feijge MA, Stegner D et al (2010) Roles of platelet STIM1 and Orai1 in glycoprotein VI- and thrombin-dependent procoagulant activity and thrombus formation. J Biol Chem 285(31):23629–23638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Grosse J, Braun A, Varga-Szabo D, Beyersdorf N, Schneider B, Zeitlmann L et al (2007) An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice. J Clin Invest 117(11):3540–3550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jobe SM, Wilson KM, Leo L, Raimondi A, Molkentin JD, Lentz SR et al (2008) Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood 111(3):1257–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jackson SP, Schoenwaelder SM (2010) Procoagulant platelets: are they necrotic? Blood 116(12):2011–2018

    Article  CAS  PubMed  Google Scholar 

  79. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517(7534):311–320

    Article  CAS  PubMed  Google Scholar 

  80. Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468(7325):834–838

    Article  CAS  PubMed  Google Scholar 

  81. Toti F, Satta N, Fressinaud E, Meyer D, Freyssinet JM (1996) Scott syndrome, characterized by impaired transmembrane migration of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited disorder. Blood 87(4):1409–1415

    CAS  PubMed  Google Scholar 

  82. Castoldi E, Collins PW, Williamson PL, Bevers EM (2011) Compound heterozygosity for 2 novel TMEM16F mutations in a patient with Scott syndrome. Blood 117(16):4399–4400

    Article  CAS  PubMed  Google Scholar 

  83. Yang H, Kim A, David T, Palmer D, Jin T, Tien J et al (2012) TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 151(1):111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nagata S, Hanayama R, Kawane K (2010) Autoimmunity and the clearance of dead cells. Cell 140(5):619–630

    Article  CAS  PubMed  Google Scholar 

  85. Suzuki J, Denning DP, Imanishi E, Horvitz HR, Nagata S (2013) Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science (New York, NY) 341(6144):403–406

    Article  CAS  Google Scholar 

  86. Hoffmeister KM (2011) The role of lectins and glycans in platelet clearance. J Thromb Haemost JTH 9(Suppl 1):35–43

    Article  CAS  PubMed  Google Scholar 

  87. Soslau G, Giles J (1982) The loss of sialic acid and its prevention in stored human platelets. Thromb Res 26(6):443–455

    Article  CAS  PubMed  Google Scholar 

  88. Jansen AJ, Josefsson EC, Rumjantseva V, Liu QP, Falet H, Bergmeier W et al (2012) Desialylation accelerates platelet clearance after refrigeration and initiates GPIbalpha metalloproteinase-mediated cleavage in mice. Blood 119(5):1263–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gasic GJ, Gasic TB, Stewart CC (1968) Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci U S A 61(1):46–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Greenberg JP, Packham MA, Guccione MA, Rand ML, Reimers HJ, Mustard JF (1979) Survival of rabbit platelets treated in vitro with chymotrypsin, plasmin, trypsin, or neuraminidase. Blood 53(5):916–927

    CAS  PubMed  Google Scholar 

  91. Stenberg PE, Levin J, Baker G, Mok Y, Corash L (1991) Neuraminidase-induced thrombocytopenia in mice: effects on thrombopoiesis. J Cell Physiol 147(1):7–16

    Article  CAS  PubMed  Google Scholar 

  92. Rumjantseva V, Grewal PK, Wandall HH, Josefsson EC, Sorensen AL, Larson G et al (2009) Dual roles for hepatic lectin receptors in the clearance of chilled platelets. Nat Med 15(11):1273–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sorensen AL, Rumjantseva V, Nayeb-Hashemi S, Clausen H, Hartwig JH, Wandall HH et al (2009) Role of sialic acid for platelet life span: exposure of beta-galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing liver macrophages and hepatocytes. Blood 114(8):1645–1654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Kotze HF, van Wyk V, Badenhorst PN, Heyns AD, Roodt JP, Lotter MG (1993) Influence of platelet membrane sialic acid and platelet-associated IgG on ageing and sequestration of blood platelets in baboons. Thromb Haemost 70(4):676–680

    CAS  PubMed  Google Scholar 

  95. Houwerzijl EJ, Blom NR, van der Want JJ, Esselink MT, Koornstra JJ, Smit JW et al (2004) Ultrastructural study shows morphologic features of apoptosis and para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura. Blood 103(2):500–506

    Article  CAS  PubMed  Google Scholar 

  96. Zucker-Franklin D, Termin CS, Cooper MC (1989) Structural changes in the megakaryocytes of patients infected with the human immune deficiency virus (HIV-1). Am J Pathol 134(6):1295–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Nishimura S, Nagasaki M, Kunishima S, Sawaguchi A, Sakata A, Sakaguchi H et al (2015) IL-1alpha induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. J Cell Biol 209(3):453–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Melloni E, Secchiero P, Celeghini C, Campioni D, Grill V, Guidotti L et al (2005) Functional expression of TRAIL and TRAIL-R2 during human megakaryocytic development. J Cell Physiol 204(3):975–982

    Article  CAS  PubMed  Google Scholar 

  99. Clarke MC, Savill J, Jones DB, Noble BS, Brown SB (2003) Compartmentalized megakaryocyte death generates functional platelets committed to caspase-independent death. J Cell Biol 160(4):577–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O et al (2002) Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 100(4):1310–1317

    Article  PubMed  CAS  Google Scholar 

  101. Vandenberg CJ, Cory S (2013) ABT-199, a new Bcl-2-specific BH3 mimetic, has in vivo efficacy against aggressive Myc-driven mouse lymphomas without provoking thrombocytopenia. Blood 121:2285–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gandhi L, Camidge DR, Ribeiro de Oliveira M, Bonomi P, Gandara D, Khaira D et al (2011) Phase I study of navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J Clin Oncol Off J Am Soc Clin Oncol 29(7):909–916

    Article  CAS  Google Scholar 

  103. Rudin CM, Hann CL, Garon EB, Ribeiro de Oliveira M, Bonomi PD, Camidge DR et al (2012) Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res 18(11):3163–3169

    Article  CAS  Google Scholar 

  104. Koehler MF, Bergeron P, Choo EF, Lau K, Ndubaku C, Dudley D et al (2014) Structure-guided rescaffolding of selective antagonists of BCL-XL. ACS Med Chem Lett 5(6):662–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lessene G, Czabotar PE, Sleebs BE, Zobel K, Lowes KN, Adams JM et al (2013) Structure-guided design of a selective BCL-X(L) inhibitor. Nat Chem Biol 9(6):390–397

    Article  CAS  PubMed  Google Scholar 

  106. Tao ZF, Hasvold L, Wang L, Wang X, Petros AM, Park CH et al (2014) Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med Chem Lett 5(10):1088–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kirito K, Watanabe T, Sawada K, Endo H, Ozawa K, Komatsu N (2002) Thrombopoietin regulates Bcl-xL gene expression through Stat5 and phosphatidylinositol 3-kinase activation pathways. J Biol Chem 277(10):8329–8337

    Article  CAS  PubMed  Google Scholar 

  108. Gozgit JM, Bebernitz G, Patil P, Ye M, Parmentier J, Wu J et al (2008) Effects of the JAK2 inhibitor, AZ960, on Pim/BAD/BCL-xL survival signaling in the human JAK2 V617F cell line SET-2. J Biol Chem 283(47):32334–32343

    Article  CAS  PubMed  Google Scholar 

  109. Florena AM, Tripodo C, Di Bernardo A, Iannitto E, Guarnotta C, Porcasi R et al (2009) Different immunophenotypical apoptotic profiles characterise megakaryocytes of essential thrombocythaemia and primary myelofibrosis. J Clin Pathol 62(4):331–338

    Article  CAS  PubMed  Google Scholar 

  110. Mitchell WB, Pinheiro MP, Boulad N, Kaplan D, Edison MN, Psaila B et al (2014) Effect of thrombopoietin receptor agonists on the apoptotic profile of platelets in patients with chronic immune thrombocytopenia. Am J Hematol 89(12):E228–E234

    Article  CAS  PubMed  Google Scholar 

  111. Alonzo MT, Lacuesta TL, Dimaano EM, Kurosu T, Suarez LA, Mapua CA et al (2012) Platelet apoptosis and apoptotic platelet clearance by macrophages in secondary dengue virus infections. J Infect Dis 205(8):1321–1329

    Article  CAS  PubMed  Google Scholar 

  112. Kraemer BF, Campbell RA, Schwertz H, Franks ZG, Vieira de Abreu A, Grundler K et al (2012) Bacteria differentially induce degradation of Bcl-xL, a survival protein, by human platelets. Blood 120(25):5014–5020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yeh JJ, Tsai S, Wu DC, Wu JY, Liu TC, Chen A (2010) P-selectin-dependent platelet aggregation and apoptosis may explain the decrease in platelet count during Helicobacter pylori infection. Blood 115(21):4247–4253

    Article  CAS  PubMed  Google Scholar 

  114. Grewal PK, Uchiyama S, Ditto D, Varki N, Le DT, Nizet V et al (2008) The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med 14(6):648–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Clark KB, Noisakran S, Onlamoon N, Hsiao HM, Roback J, Villinger F et al (2012) Multiploid CD61+ cells are the pre-dominant cell lineage infected during acute dengue virus infection in bone marrow. PLoS ONE 7(12):e52902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zauli G, Catani L, Gibellini D, Re MC, Vianelli N, Colangeli V et al (1996) Impaired survival of bone marrow GPIIb/IIa+ megakaryocytic cells as an additional pathogenetic mechanism of HIV-1-related thrombocytopenia. Br J Haematol 92(3):711–717

    Article  CAS  PubMed  Google Scholar 

  117. Binder D, Fehr J, Hengartner H, Zinkernagel RM (1997) Virus-induced transient bone marrow aplasia: major role of interferon-alpha/beta during acute infection with the noncytopathic lymphocytic choriomeningitis virus. J Exp Med 185(3):517–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Olsson B, Andersson PO, Jernas M, Jacobsson S, Carlsson B, Carlsson LM et al (2003) T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med 9(9):1123–1124

    Article  CAS  PubMed  Google Scholar 

  119. Shao L, Wu Y, Zhou H, Qin P, Ni H, Peng J et al (2014) Successful treatment with oseltamivir phosphate in a patient with chronic immune thrombocytopenia positive for anti-GPIb/IX autoantibody. Platelets 28:1–3

    Google Scholar 

  120. Alioglu B, Tasar A, Ozen C, Selver B, Dallar Y (2010) An experience of oseltamivir phosphate (tamiflu) in a pediatric patient with chronic idiopathic thrombocytopenic purpura: a case report. Pathophysiol Haemost Thromb 37(2–4):55–58

    PubMed  Google Scholar 

  121. Jansen AJ, Peng J, Zhao HG, Hou M, Ni H (2015) Sialidase inhibition to increase platelet counts: a new treatment option for thrombocytopenia. Am J Hematol 90:E94–E95

    Article  CAS  PubMed  Google Scholar 

  122. Houwerzijl EJ, Blom NR, van der Want JJ, Vellenga E, de Wolf JT (2006) Megakaryocytic dysfunction in myelodysplastic syndromes and idiopathic thrombocytopenic purpura is in part due to different forms of cell death. Leukemia 20(11):1937–1942

    Article  CAS  PubMed  Google Scholar 

  123. Hatfill SJ, Fester ED, Steytler JG (1992) Apoptotic megakaryocyte dysplasia in the myelodysplastic syndromes. Hematol Pathol 6(2):87–93

    CAS  PubMed  Google Scholar 

  124. Radley JM, Haller CJ (1983) Fate of senescent megakaryocytes in the bone marrow. Br J Haematol 53(2):277–287

    Article  CAS  PubMed  Google Scholar 

  125. Freson K, Wijgaerts A, van Geet C (2014) Update on the causes of platelet disorders and functional consequences. Int J Lab Hematol 36(3):313–325

    Article  CAS  PubMed  Google Scholar 

  126. Morison IM, Cramer Borde EM, Cheesman EJ, Cheong PL, Holyoake AJ, Fichelson S et al (2008) A mutation of human cytochrome c enhances the intrinsic apoptotic pathway but causes only thrombocytopenia. Nat Genet 40(4):387–389

    Article  CAS  PubMed  Google Scholar 

  127. De Rocco D, Cerqua C, Goffrini P, Russo G, Pastore A, Meloni F et al (2014) Mutations of cytochrome c identified in patients with thrombocytopenia THC4 affect both apoptosis and cellular bioenergetics. Biochim Biophys Acta 1842(2):269–274

    Article  PubMed  CAS  Google Scholar 

  128. Kunishima S, Kojima T, Tanaka T, Kamiya T, Ozawa K, Nakamura Y et al (1999) Mapping of a gene for May-Hegglin anomaly to chromosome 22q. Hum Genet 105(5):379–383

    Article  CAS  PubMed  Google Scholar 

  129. Seri M, Cusano R, Gangarossa S, Caridi G, Bordo D, Lo Nigro C et al (2000) Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Heggllin/Fechtner syndrome consortium. Nat Genet 26(1):103–105

    Article  CAS  PubMed  Google Scholar 

  130. Eckly A, Rinckel JY, Laeuffer P, Cazenave JP, Lanza F, Gachet C et al (2010) Proplatelet formation deficit and megakaryocyte death contribute to thrombocytopenia in Myh9 knockout mice. J Thromb Haemost JTH 8(10):2243–2251

    Article  CAS  PubMed  Google Scholar 

  131. Hamilton RW, Shaikh BS, Ottie JN, Storch AE, Saleem A, White JG (1980) Platelet function, ultrastructure, and survival in the May-Hegglin anomaly. Am J Clin Pathol 74(5):663–668

    Article  CAS  PubMed  Google Scholar 

  132. Leon C, Eckly A, Hechler B, Aleil B, Freund M, Ravanat C et al (2007) Megakaryocyte-restricted MYH9 inactivation dramatically affects hemostasis while preserving platelet aggregation and secretion. Blood 110(9):3183–3191

    Article  CAS  PubMed  Google Scholar 

  133. Raccuglia G (1971) Gray platelet syndrome. A variety of qualitative platelet disorder. Am J Med 51(6):818–828

    Article  CAS  PubMed  Google Scholar 

  134. Breton-Gorius J, Vainchenker W, Nurden A, Levy-Toledano S, Caen J (1981) Defective alpha-granule production in megakaryocytes from gray platelet syndrome: ultrastructural studies of bone marrow cells and megakaryocytes growing in culture from blood precursors. Am J Pathol 102(1):10–19

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Deppermann C, Cherpokova D, Nurden P, Schulz JN, Thielmann I, Kraft P et al (2013) Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice. J Clin Invest. pii: 69210. doi:10.1172/JCI69210.

    Google Scholar 

  136. Kahr WH, Lo RW, Li L, Pluthero FG, Christensen H, Ni R et al (2013) Abnormal megakaryocyte development and platelet function in Nbeal2(-/-) mice. Blood 122(19):3349–3358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Robertson SP, Twigg SR, Sutherland-Smith AJ, Biancalana V, Gorlin RJ, Horn D et al (2003) Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans. Nat Genet 33(4):487–491

    Article  CAS  PubMed  Google Scholar 

  138. Nurden P, Debili N, Coupry I, Bryckaert M, Youlyouz-Marfak I, Sole G et al (2011) Thrombocytopenia resulting from mutations in filamin A can be expressed as an isolated syndrome. Blood 118(22):5928–5937

    Article  CAS  PubMed  Google Scholar 

  139. Cranmer SL, Ashworth KJ, Yao Y, Berndt MC, Ruggeri ZM, Andrews RK et al (2011) High shear-dependent loss of membrane integrity and defective platelet adhesion following disruption of the GPIbalpha-filamin interaction. Blood 117(9):2718–2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Berrou E, Adam F, Lebret M, Fergelot P, Kauskot A, Coupry I et al (2013) Heterogeneity of platelet functional alterations in patients with filamin A mutations. Arterioscler Thromb Vasc Biol 33(1):e11–e18

    Article  CAS  PubMed  Google Scholar 

  141. Jurak Begonja A, Hoffmeister KM, Hartwig JH, Falet H (2011) FlnA-null megakaryocytes prematurely release large and fragile platelets that circulate poorly. Blood 118(8):2285–2295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Bernard J, Soulier JP [Not Available] La semaine des hopitaux: organe fonde par l’Association d’enseignement medical des hopitaux de Paris 1948;24(Spec No):3217–3223

    Google Scholar 

  143. Grottum KA, Solum NO (1969) Congenital thrombocytopenia with giant platelets: a defect in the platelet membrane. Br J Haematol 16(3):277–290

    Article  CAS  PubMed  Google Scholar 

  144. Cullum C, Cooney DP, Schrier SL (1967) Familial thrombocytopenic thrombocytopathy. Br J Haematol 13(2):147–159

    Article  CAS  PubMed  Google Scholar 

  145. Heyns Adu P, Badenhorst PN, Wessels P, Pieters H, Lotter MG (1985) Kinetics, in vivo redistribution and sites of sequestration of indium-111-labelled platelets in giant platelet syndromes. Br J Haematol 60(2):323–330

    Article  PubMed  Google Scholar 

  146. Strassel C, Eckly A, Leon C, Petitjean C, Freund M, Cazenave JP et al (2009) Intrinsic impaired proplatelet formation and microtubule coil assembly of megakaryocytes in a mouse model of Bernard-Soulier syndrome. Haematologica 94(6):800–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tomer A, Scharf RE, McMillan R, Ruggeri ZM, Harker LA (1994) Bernard-Soulier syndrome: quantitative characterization of megakaryocytes and platelets by flow cytometric and platelet kinetic measurements. Eur J Haematol 52(4):193–200

    CAS  PubMed  Google Scholar 

  148. Perret BP, Plantavid M, Chap H, Douste-Blazy L (1983) Are polyphosphoinositides involved in platelet activation? Biochem Biophys Res Commun 110(2):660–667

    Article  CAS  PubMed  Google Scholar 

  149. Rand ML, Wang H, Bang KW, Teitel JM, Blanchette VS, Freedman J et al (2010) Phosphatidylserine exposure and other apoptotic-like events in Bernard-Soulier syndrome platelets. Am J Hematol 85(8):584–592

    Article  CAS  PubMed  Google Scholar 

  150. Ryan AK, Goodship JA, Wilson DI, Philip N, Levy A, Seidel H et al (1997) Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet 34(10):798–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jerome LA, Papaioannou VE (2001) DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 27(3):286–291

    Article  CAS  PubMed  Google Scholar 

  152. Kato T, Kosaka K, Kimura M, Imamura S, Yamada O, Iwai K et al (2003) Thrombocytopenia in patients with 22q11.2 deletion syndrome and its association with glycoprotein Ib-beta. Genetics Med Off J Am Coll Med Genetics 5(2):113–119

    Article  CAS  Google Scholar 

  153. Van Geet C, Devriendt K, Eyskens B, Vermylen J, Hoylaerts MF (1998) Velocardiofacial syndrome patients with a heterozygous chromosome 22q11 deletion have giant platelets. Pediatr Res 44(4):607–611

    Article  PubMed  Google Scholar 

  154. Casari C, Du V, Wu YP, Kauskot A, de Groot PG, Christophe OD et al (2013) Accelerated uptake of VWF/platelet complexes in macrophages contributes to VWD type 2B-associated thrombocytopenia. Blood 122(16):2893–2902

    Article  CAS  PubMed  Google Scholar 

  155. Nurden P, Debili N, Vainchenker W, Bobe R, Bredoux R, Corvazier E et al (2006) Impaired megakaryocytopoiesis in type 2B von Willebrand disease with severe thrombocytopenia. Blood 108(8):2587–2595

    Article  CAS  PubMed  Google Scholar 

  156. Thrasher AJ (2009) New insights into the biology of Wiskott-Aldrich syndrome (WAS). Hematol Educ Prog Am Soc Hematol Am Soc Hematol Educ Prog 1:132–138

    Google Scholar 

  157. Aldrich RA, Steinberg AG, Campbell DC (1954) Pedigree demonstrating a sex-linked recessive condition characterized by draining ears, eczematoid dermatitis and bloody diarrhea. Pediatrics 13(2):133–139

    CAS  PubMed  Google Scholar 

  158. Zhu Q, Zhang M, Blaese RM, Derry JM, Junker A, Francke U et al (1995) The Wiskott-Aldrich syndrome and X-linked congenital thrombocytopenia are caused by mutations of the same gene. Blood 86(10):3797–3804

    CAS  PubMed  Google Scholar 

  159. Prislovsky A, Marathe B, Hosni A, Bolen AL, Nimmerjahn F, Jackson CW et al (2008) Rapid platelet turnover in WASP(-) mice correlates with increased ex vivo phagocytosis of opsonized WASP(-) platelets. Exp Hematol 36(5):609–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Marathe BM, Prislovsky A, Astrakhan A, Rawlings DJ, Wan JY, Strom TS (2009) Antiplatelet antibodies in WASP(-) mice correlate with evidence of increased in vivo platelet consumption. Exp Hematol 37(11):1353–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Murphy S (1972) Intrinsic platelet defects in hereditary thrombocytopenia. Ann N Y Acad Sci 201:421–428

    Article  CAS  PubMed  Google Scholar 

  162. Bender M, Stritt S, Nurden P, van Eeuwijk JM, Zieger B, Kentouche K et al (2014) Megakaryocyte-specific profilin1-deficiency alters microtubule stability and causes a Wiskott-Aldrich syndrome-like platelet defect. Nat Commun 5:4746

    Article  CAS  PubMed  Google Scholar 

  163. Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA et al (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6(6):1389–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F et al (1999) Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science (New York, NY) 286(5445):1735–1738

    Article  CAS  Google Scholar 

  165. Ogilvy S, Metcalf D, Print CG, Bath ML, Harris AW, Adams JM (1999) Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc Natl Acad Sci U S A 96(26):14943–14948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kaluzhny Y, Yu G, Sun S, Toselli PA, Nieswandt B, Jackson CW et al (2002) BclxL overexpression in megakaryocytes leads to impaired platelet fragmentation. Blood 100(5):1670–1678

    Article  CAS  PubMed  Google Scholar 

  167. Michels J, Kepp O, Senovilla L, Lissa D, Castedo M, Kroemer G et al (2013) Functions of BCL-X L at the interface between cell death and metabolism. Int J Cell Biol 2013:705294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Priault M, Hue E, Marhuenda F, Pilet P, Oliver L, Vallette FM (2010) Differential dependence on Beclin 1 for the regulation of pro-survival autophagy by Bcl-2 and Bcl-xL in HCT116 colorectal cancer cells. PLoS ONE 5(1):e8755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Liptak MD, Fagerlund RD, Ledgerwood EC, Wilbanks SM, Bren KL (2011) The proapoptotic G41S mutation to human cytochrome c alters the heme electronic structure and increases the electron self-exchange rate. J Am Chem Soc 133(5):1153–1155

    Article  CAS  PubMed  Google Scholar 

  170. Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S et al (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39(3):443–453

    Article  CAS  PubMed  Google Scholar 

  171. Hottz ED, Lopes JF, Freitas C, Valls-de-Souza R, Oliveira MF, Bozza MT et al (2013) Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood 122(20):3405–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Cao Y, Cai J, Zhang S, Yuan N, Li X, Fang Y et al (2015) Loss of autophagy leads to failure in megakaryopoiesis, megakaryocyte differentiation, and thrombopoiesis in mice. Exp Hematol 43:488–494

    Article  PubMed  Google Scholar 

  173. Feng W, Chang C, Luo D, Su H, Yu S, Hua W et al (2014) Dissection of autophagy in human platelets. Autophagy 10(4):642–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Maugeri N, Campana L, Gavina M, Covino C, De Metrio M, Panciroli C et al (2014) Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost JTH 12(12):2074–2088

    Article  CAS  PubMed  Google Scholar 

  175. Pieczarka EM, Yamaguchi M, Wellman ML, Radin MJ (2014) Platelet vacuoles in a dog with severe nonregenerative anemia: evidence of platelet autophagy. Vet Clin Pathol Am Soc Vet Clin Pathol 43(3):326–329

    Article  Google Scholar 

  176. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15(2):135–147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Project Grants (1079250), Program Grants (1016647), and an Independent Research Institutes Infrastructure Support Scheme Grant (361646) from the Australian National Health and Medical Research Council, a fellowship from the German Research Foundation (I.P. DFG, PL707/1-1), and a Victorian State Government Operational Infrastructure Support Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma C. Josefsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Au, A.E., Lebois, M., Pleines, I., Josefsson, E.C. (2016). Regulation of Megakaryocyte and Platelet Survival. In: Schulze, H., Italiano, J. (eds) Molecular and Cellular Biology of Platelet Formation. Springer, Cham. https://doi.org/10.1007/978-3-319-39562-3_9

Download citation

Publish with us

Policies and ethics