Skip to main content

Remineralisation and Biomimetics: Remineralisation Agents and Fluoride Therapy

  • Chapter
  • First Online:
Evidence-Based Caries Prevention

Abstract

The demineralisation and remineralisation cycle needs to be controlled in order to prevent the decomposition of dental tissues. The use of fluoridated products, especially the consumption of fluoridated water and use of fluoridated toothpaste, provides significant reduction in caries risk in a cost-effective manner. Fluoride has also been used as a caries-preventive agent in varnishes and gels; for decades anti-fluoride propaganda questioned the public and the dental sector about its safety. Therefore, it is important to discuss the pros and cons of fluoride therapy using scientific evidence. More recently, a number of products containing calcium and phosphate have been released onto the market – these products use a variety of technologies and have varying levels of evidenced-based justification. The mechanisms of action of fluoride- and calcium-based technologies will be discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avery JK. Enamel. In: Steele PF, editor. Essentials of oral histology and embryology. 2nd ed. St Louis: Mosby Inc.; 2000. p. 84–93.

    Google Scholar 

  2. Mkhonto D, de Leeuw NH. A computer modelling study of the effect of water on the surface structure and morphology of fluorapatite: introducing a Ca-10(PO4)(6)F-2 potential model. J Mater Chem. 2002;12(9):2633–42.

    Article  Google Scholar 

  3. Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res. 1994;8(2):263–71.

    PubMed  Google Scholar 

  4. Kleinberg I. A mixed-bacteria ecological approach to understanding the role of oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific plaque hypothesis. Crit Rev Oral Biol Med. 2002;13(2):108–25.

    Article  PubMed  Google Scholar 

  5. Beighton D. The complex oral microflora of high-risk individuals and groups and its role in the caries process. Comm Dent Oral Epidemiol. 2005;33:248–55.

    Article  Google Scholar 

  6. Featherstone JDB. Dental caries: a dynamic disease process. Aust Dent J. 2008;53(3):286–91.

    Article  PubMed  Google Scholar 

  7. Edgar W, Dawes C, O’Mullane D. Saliva and oral health. 3rd ed. London: British Dental Association; 2004. p. 120–8.

    Google Scholar 

  8. Morbidity and Mortality Weekly Report. Fluoridation of drinking water to prevent Dental caries. In: Services Usdohh, editor. Centers of Disease Control as te author – i.e. Centers of Disease Control. Fluoridation of drinking water to prevent dental caries. MMWR. 1999;48(41):933–40. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm4841a1.htm.

  9. ten Cate JM. Current concepts on the theories of the mechanism of action of fluoride. Acta Odontol Scand. 1999;57(6):325–9.

    Article  PubMed  Google Scholar 

  10. Aoba T. Solubility properties of human tooth mineral and pathogenesis of dental caries. Oral Dis. 2004;10(5):249–57.

    Article  PubMed  Google Scholar 

  11. Vogel GL, Tenuta LMA, Schumacher GE, Chow LC. No calcium-fluoride-like deposits detected in plaque shortly after a sodium fluoride mouthrinse. Caries Res. 2010;44(2):108–15.

    Article  PubMed  PubMed Central  Google Scholar 

  12. England PH. Water fluoridation. Health monitoring report for England 2014. London: Department of Health, UK; 2014. Contract No.: 2013547.

    Google Scholar 

  13. McDonagh MS, Whiting PF, Wilson PM, Sutton AJ, Chestnutt I, Cooper J, et al. Systematic review of water fluoridation. BMJ. 2000;321(7265):855–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Services USDoHaH. U.S. Public Health Service recommendation for fluoride concentration in drinking water for the prevention of dental caries. Public Health Rep. 2015;130:1–14.

    Google Scholar 

  15. Cagetti MG, Campus G, Milia E, Lingström P. A systematic review on fluoridated food in caries prevention. Acta Odontol Scand. 2013;71(3–4):381–7.

    Article  PubMed  Google Scholar 

  16. Yeung CA, Chong LY, Glenny A-M. Fluoridated milk for preventing dental caries. Cochrane Database Syst Rev. 2015;(9):CD003876. doi:10.1002/14651858.CD003876.pub4.

  17. Tubert-Jeannin S, Auclair C, Amsallem E, Tramini P, Gerbaud L, Ruffieux C, et al. Fluoride supplements (tablets, drops, lozenges or chewing gums) for preventing dental caries in children. Cochrane Database Syst Rev. 2011;(12):CD007592. doi:10.1002/14651858.CD007592.pub2.

  18. Walsh T, Worthington HV, Glenny AM, Appelbe P, Marinho VC, Shi X. Fluoride toothpastes of different concentrations for preventing dental caries in children and adolescents. Cochrane Database Syst Rev. 2010;(1):CD007868.

    Google Scholar 

  19. Santos APP, Oliveira BH, Nadanovsky P. Effects of Low and standard fluoride toothpastes on caries and fluorosis: systematic review and meta-analysis. Caries Res. 2013;47(5):382–90.

    Article  PubMed  Google Scholar 

  20. Wright JT, Hanson N, Ristic H, Whall CW, Estrich CG, Zentz RR. Fluoride toothpaste efficacy and safety in children younger than 6 years: a systematic review. J Am Dent Assoc. 2014;145(2):182–9.

    Article  PubMed  Google Scholar 

  21. Ekstrand KR, Poulsen JE, Hede B, Twetman S, Qvist V, Ellwood RP. A randomized clinical trial of the anti-caries efficacy of 5,000 compared to 1,450 ppm fluoridated toothpaste on root caries lesions in elderly disabled nursing home residents. Caries Res. 2013;47(5):391–8.

    Article  PubMed  Google Scholar 

  22. Marinho VCC, Worthington HV, Walsh T, Chong LY. Fluoride gels for preventing dental caries in children and adolescents. Cochrane Database Sys Rev. 2015;(6):CD002280. doi:10.1002/14651858.CD002280.pub2.

  23. Marinho VCC, Higgins JPT, Sheiham A, Logan S. One topical fluoride (toothpastes, or mouthrinses, or gels, or varnishes) versus another for preventing dental caries in children and adolescents. Cochrane Database Syst Rev. 2004;(1):CD002780. doi:10.1002/14651858.CD002780.pub2.

  24. Marinho VCC, Worthington HV, Walsh T, Clarkson JE. Fluoride varnishes for preventing dental caries in children and adolescents. Cochrane Database Syst Rev. 2013;(7):CD002279. doi:10.1002/14651858.CD002279.pub2.

  25. Marinho VC, Worthington HV, Walsh T, Chong LY. Fluoride gels for preventing dental caries in children and adolescents. Cochrane Database Syst Rev. 2015;(6):CD002280.

    Google Scholar 

  26. Weintraub JA, Ramos-Gomez F, Jue B, Shain S, Hoover CI, Featherstone JDB, et al. Fluoride varnish efficacy in preventing early childhood caries. J Dent Res. 2006;85(2):172–6.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shen P, Bagheri R, Walker GD, Yuan Y, Stanton DP, Reynolds C, et al. Effect of calcium phosphate addition to fluoride containing dental varnishes on enamel demineralization. Aust Dent J. 2015. doi:10.1111/adj.12385.

    Google Scholar 

  28. Pithon MM, dos Santos MJ, Andrade CSS, Leão Filho JCB, Braz AKS, de Araujo RE, et al. Effectiveness of varnish with CPP–ACP in prevention of caries lesions around orthodontic brackets: an OCT evaluation. Eur J Orthod. 2015;37(2):177–82.

    Article  PubMed  Google Scholar 

  29. Reynolds EC, Cai F, Cochrane NJ, Walker GD, Morgan MV, Reynolds C. Fluoride and casein phosphopeptide-amorphous calcium phosphate. J Dent Res. 2008;87:344–8.

    Article  PubMed  Google Scholar 

  30. Services UDoHaH. Statement on the evidence supporting the safety and effectiveness of community water fluoridation. Atlanta: Centers for Disease Control and Prevention; 2015 [cited 2015 10 November].

    Google Scholar 

  31. Aoba T, Fejerskov O. Dental fluorosis: chemistry and biology. Crit Rev Oral Biol Med. 2002;13(2):155–70.

    Article  PubMed  Google Scholar 

  32. Thylstrup A, Fejerskov O. A scanning electron microscopic and microradiographic study of pits in fluorosed human enamel. Eur J Oral Sci. 1979;87(2):105–14.

    Article  Google Scholar 

  33. Bhagavatula P, Levy SM, Broffitt B, Weber-Gasparoni K, Warren JJ. Timing of fluoride intake and dental fluorosis on late-erupting permanent teeth. Community Dent Oral Epidemiol. 2016;44(1):32–45.

    Article  PubMed  Google Scholar 

  34. Pendrys DG, Haugejorden O, Baårdsen A, Wang NJ, Gustavsen F. The risk of enamel fluorosis and caries among Norwegian children: implications for Norway and the United States. J Am Dent Assoc. 2010;141(4):401–14.

    Article  PubMed  Google Scholar 

  35. L-s G, Kim YK, Liu Y, Takahashi K, Arun S, Wimmer CE, et al. Immobilization of a phosphonated analog of matrix phosphoproteins within cross-linked collagen as a templating mechanism for biomimetic mineralization. Acta Biomater. 2011;7(1):268–77.

    Article  Google Scholar 

  36. Cochrane NJ, Reynolds EC. Calcium phosphopeptides — mechanisms of action and evidence for clinical efficacy. Adv Dent Res. 2012;24(2):41–7.

    Article  PubMed  Google Scholar 

  37. Guggenheim B, Schmid R, Aeschlimann JM, Berrocal R, Neeser JR. Powdered milk micellar casein prevents oral colonization by Streptococcus sobrinus and dental caries in rats: a basis for the caries-protective effect of dairy products. Caries Res. 1999;33(6):446–54.

    Article  PubMed  Google Scholar 

  38. Cochrane NJ, Saranathan S, Cai F, Cross KJ, Reynolds EC. Enamel subsurface lesion remineralisation with casein phosphopeptide stabilised solutions of calcium, phosphate and fluoride. Caries Res. 2008;42:88–97.

    Article  PubMed  Google Scholar 

  39. Cao Y, Mei ML, Xu J, Lo ECM, Li Q, Chu CH. Biomimetic mineralisation of phosphorylated dentine by CPP-ACP. J Dent. 2013;41(9):818–25.

    Article  PubMed  Google Scholar 

  40. Brunton PA, Davies RPW, Burke JL, Smith A, Aggeli A, Brookes SJ, et al. Treatment of early caries lesions using biomimetic self-assembling peptides – a clinical safety trial. Br Dent J. 2013;215(4):E6. http://www.nature.com/bdj/journal/v215/n4/pdf/sj.bdj.2013.741.pdf

    Google Scholar 

  41. Takahashi F, Kurokawa H, Shibasaki S, Kawamoto R, Murayama R, Miyazaki M. Ultrasonic assessment of the effects of self-assembling peptide scaffolds on preventing enamel demineralization. Acta Odontol Scand. 2016;74(2):142–7.

    Google Scholar 

  42. Kirkham J, Firth A, Vernals D, Boden N, Robinson C, Shore RC, et al. Self-assembling peptide scaffolds promote enamel remineralization. J Dent Res. 2007;86(5):426–30.

    Article  PubMed  Google Scholar 

  43. Jablonski-Momeni A, Heinzel-Gutenbrunner M. Efficacy of the self-assembling peptide P11-4 in constructing a remineralization scaffold on artificially-induced enamel lesions on smooth surfaces. J Orofac Orthop. 2014;75(3):175–90.

    Article  PubMed  Google Scholar 

  44. Mangum JE, Crombie FA, Kilpatrick N, Manton DJ, Hubbard MJ. Surface integrity governs the proteome of hypomineralized enamel. J Dent Res. 2010;89(10):1160–5.

    Article  PubMed  Google Scholar 

  45. Robinson C, Shore RC, Bonass WA, Brookes SJ, Boteva E, Kirkham J. Identification of human serum albumin in human caries lesions of enamel: the role of putative inhibitors of remineralisation. Caries Res. 1998;32(3):193–9.

    Article  PubMed  Google Scholar 

  46. Robinson C, Shore RC, Brookes SJ, Strafford S, Wood SR, Kirkham J. The chemistry of enamel caries. Crit Rev Oral Biol Med. 2000;11(4):481–95.

    Article  PubMed  Google Scholar 

  47. Yin W, Hu DY, Fan X, Feng Y, Zhang YP, Cummins D, et al. A clinical investigation using quantitative light-induced fluorescence (QLF) of the anticaries efficacy of a dentifrice containing 1.5% arginine and 1450 ppm fluoride as sodium monofluorophosphate. J Clin Dent. 2013;24 Spec no A:A15–22.

    Google Scholar 

  48. Kraivaphan P, Amornchat C, Triratana T, Mateo LR, Ellwood R, Cummins D, et al. Two-year caries clinical study of the efficacy of novel dentifrices containing 1.5% arginine, an insoluble calcium compound and 1,450 ppm fluoride. Caries Res. 2013;47(6):582–90.

    Article  PubMed  Google Scholar 

  49. ten Cate JM, Cummins D. Fluoride toothpaste containing 1.5% arginine and insoluble calcium as a new standard of care in caries prevention. J Clin Dent. 2013;24(3):79–87.

    PubMed  Google Scholar 

  50. Burne RA, Marquis RE. Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett. 2000;193(1):1–6.

    Article  PubMed  Google Scholar 

  51. Shaw D, Naimi-Akbar A, Astvaldsdottir A. The tribulations of toothpaste trials: unethical arginine dentifrice research. Br Dent J. 2015;219(12):567–9.

    Article  PubMed  Google Scholar 

  52. Wefel JS. NovaMin®: likely clinical success. Adv Dent Res. 2009;21(1):40–3.

    PubMed  Google Scholar 

  53. Reynolds EC. Calcium phosphate-based remineralization systems: scientific evidence? Aust Dent J. 2008;53(3):268–73.

    Article  PubMed  Google Scholar 

  54. Tschoppe P, Neumann K, Mueller J, Kielbassa AM. Effect of fluoridated bleaching gels on the remineralization of predemineralized bovine enamel in vitro. J Dent. 2009;37(2):156–62.

    Article  PubMed  Google Scholar 

  55. Papas A, Russell D, Singh M, Kent R, Triol C, Winston A. Caries clinical trial of a remineralising toothpaste in radiation patients. Gerodontology. 2008;25(2):76–88.

    Article  PubMed  Google Scholar 

  56. Burwell A, Jennings D, Muscle D, Greenspan DC. NovaMin and dentin hypersensitivity – in vitro evidence of efficacy. J Clin Dent. 2010;21(3):66–71.

    PubMed  Google Scholar 

  57. Memarpour M, Soltanimehr E, Sattarahmady N. Efficacy of calcium- and fluoride-containing materials for the remineralization of primary teeth with early enamel lesion. Microsc Res Tech. 2015;78(9):801–6.

    Article  PubMed  Google Scholar 

  58. Shen P, Manton DJ, Cochrane NJ, Walker GD, Yuan Y, Reynolds C, et al. Effect of added calcium phosphate on enamel remineralization by fluoride in a randomized controlled in situ trial. J Dent. 2011;39(7):518–25.

    Article  PubMed  Google Scholar 

  59. Seppä L, Leppänen T, Hausen H. Fluoride varnish versus acidulated phosphate fluoride gel: a 3-year clinical trial. Caries Res. 1995;29(5):327–30.

    Article  PubMed  Google Scholar 

  60. Marinho VC, Higgins JP, Logan S, Sheiham A. Systematic review of controlled trials on the effectiveness of fluoride gels for the prevention of dental caries in children. J Dent Educ. 2003;67(4):448–58.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Manton BDSc, MDSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manton, D.J., Reynolds, E.C. (2016). Remineralisation and Biomimetics: Remineralisation Agents and Fluoride Therapy. In: Eden, E. (eds) Evidence-Based Caries Prevention. Springer, Cham. https://doi.org/10.1007/978-3-319-40034-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40034-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40032-7

  • Online ISBN: 978-3-319-40034-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics