Skip to main content

Phytofiltration of Metal(loid)-Contaminated Water: The Potential of Native Aquatic Plants

  • Chapter
  • First Online:
Phytoremediation

Abstract

This work constitutes a general description of the results obtained in native aquatic plant species from Portugal (South Western Europe), for the assessment of the potential for phytofiltration techniques of multielement contaminated water. Uptake patterns for metal(loid)s studied indicate the following features: Uranium accumulation in the range of 243–4979 mg/kg (DW) in Fontinalis antipyretica, Callitriche stagnalis, Callitriche hamulata, Callitriche lusitanica, and Ranunculus peltatus; Arsenic concentration from 346 to 2346 mg/kg in C. lusitanica, C. brutia, Lemna minor, Azolla caroliniana, R. trichophyllus, C. stagnalis, and F. antipyretica; Lead from 90.5 to 1104 mg/kg in R. trichophyllus, rhizomes/roots of Typha latifolia, L. minor, Spirodela polyrrhiza, and Myriophyllum spicatum; Copper from 81.8 to 161 mg/kg in C. lusitanica, C. hamulata, R. trichophyllus, and C. stagnalis; and Zinc from 900 to 34,162 mg/kg in L. minor, Lemanea fluviatilis, C. lusitanica, C. brutia, R. trichophyllus, F. antipyretica, and C. stagnalis. The abundance of some of these plant species, their biomass, relatively high bioproductivity, and their ability to accumulate several toxic elements collectively indicates their potential for the development of phytofiltration methodologies, either in monoculture systems or in combined systems representing natural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lottermoser BG (2003) Mine wastes: Characterization, treatment and environmental impacts. Springer, Berlin, p 400

    Book  Google Scholar 

  2. Chaney RL, Malik M, Li YM, Brown SL, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  PubMed  Google Scholar 

  3. Ensley BD (2000) Rationale for use of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley, New York, pp 3–11

    Google Scholar 

  4. ITRC (2001) Phytotechnology technical and regulatory guidance document. Interstate Technology & Regulatory Council, Phytotechnologies Work Team, Washington, DC, p 124

    Google Scholar 

  5. Prasad MNV (2004) Phytoremediation of metals and radionuclides in the environment: The case for natural hyperaccumulators, metal transporters, soil-amending chelators and transgenic plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer, Berlin, pp 345–391

    Chapter  Google Scholar 

  6. Mendez MO, Maier RM (2008) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7:47–59

    Article  CAS  Google Scholar 

  7. Dickinson NM, Baker AJM, Doronila A, Laidlaw S, Reeves RD (2009) Phytoremediation of inorganics: realism and synergies. Int J Phytoremediation 11:97–114

    Article  CAS  Google Scholar 

  8. Favas PJC, Pratas J, Varun M, D’Souza R, Paul MS (2014) Phytoremediation of soils contaminated with metals and metalloids at mining areas: Potential of native flora. In: Hernández-Soriano MC (ed) Environmental risk assessment of soil contamination. InTech, Rijeka, pp 485–517

    Google Scholar 

  9. El-Ramady HR, Abdalla N, Alshaal T, Elhenawy AS, Shams MS, Faizy SE-DA et al (2015) Giant reed for selenium phytoremediation under changing climate. Environ Chem Lett 13:359–380

    Article  CAS  Google Scholar 

  10. Varun M, D’Souza R, Favas PJC, Pratas J, Paul MS (2015) Utilization and supplementation of phytoextraction potential of some terrestrial plants in metal-contaminated soils. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: Management of environmental contaminants, vol 1, Springer. Cham, Heidelberg, pp 177–200

    Google Scholar 

  11. Roy M, Giri AK, Dutta S, Mukherjee P (2015) Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environ Int 75:180–198

    Article  CAS  PubMed  Google Scholar 

  12. Favas PJC, Pratas J, Chaturvedi R, Paul MS, Prasad MNV (2016) Tree crops on abandoned mines for environmental remediation and industrial feedstock. In: Prasad MNV (ed) Bioremediation and Bioeconomy. Elsevier, Amsterdam, pp 219–249

    Chapter  Google Scholar 

  13. ITRC (2009) Phytotechnology technical and regulatory guidance and decision trees, revised. PHYTO-3. Interstate Technology & Regulatory Council, Phytotechnologies Team, Washington, DC, p 204

    Google Scholar 

  14. Nwoko CO (2010) Trends in phytoremediation of toxic elemental and organic pollutants. Afr J Biotechnol 9(37):6010–6016

    CAS  Google Scholar 

  15. Bose S, Rai V, Bhattacharya S, Chaudhuri P, Bhattacharyya AK (2011) Phytoremediation: A promising technology of bioremediation for the removal of heavy metal and organic pollutants from the soil. In: Golubev IA (ed) Handbook of phytoremediation. Nova Science, New York, pp 263–296

    Google Scholar 

  16. Gaur N, Flora G, Yadav M, Tiwari A (2014) A review with recent advancements on bioremediation-based abolition of heavy metals. Environ Sci Processes Impacts 16(2):180–193

    Article  CAS  Google Scholar 

  17. Yavari S, Malakahmad A, Sapari NB (2015) A review on phytoremediation of crude oil spills. Water Air Soil Pollut 226(8):279

    Article  CAS  Google Scholar 

  18. Zhang X, Wang J, Liu X, Gu L, Hou Y, He C et al (2015) Potential of Sagittaria trifolia for phytoremediation of diesel. Int J Phytoremediat 17:1220–1226

    Article  CAS  Google Scholar 

  19. He Y, Chi J (2016) Phytoremediation of sediments polluted with phenanthrene and pyrene by four submerged aquatic plants. J Soils Sediments 16:309–317

    Article  CAS  Google Scholar 

  20. Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318A–323A

    Article  CAS  PubMed  Google Scholar 

  21. Rylott EL, Bruce NC (2008) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27(2):73–81

    Article  PubMed  CAS  Google Scholar 

  22. Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Ensley BD (ed) Raskin I. Wiley, Phytoremediation of toxic metals. Using plants to clean up the environment. New York, pp 71–88

    Google Scholar 

  23. Domínguez MT, Madrid F, Marañón T, Murillo JM (2009) Cadmium availability in soil and retention in oak roots: potential for phytostabilization. Chemosphere 76:480–486

    Article  PubMed  CAS  Google Scholar 

  24. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals: Concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  25. Brooks RR (1998) Phytoremediation by volatilisation. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, New York, pp 289–312

    Google Scholar 

  26. Pilon-Smits E, Pilon M (2000) Breeding mercury-breathing plants for environmental cleanup. Trends Plant Sci 5(6):235–236

    Article  CAS  PubMed  Google Scholar 

  27. Ruiz ON, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Biotechnol 20:213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pilon-Smits EAH, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20:207–212

    Article  CAS  PubMed  Google Scholar 

  29. McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, New York, pp 261–287

    Google Scholar 

  30. Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  31. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  CAS  PubMed  Google Scholar 

  32. McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  CAS  PubMed  Google Scholar 

  33. Hernández-Allica J, Becerril JM, Garbisu C (2008) Assessment of the phytoextraction potential of high biomass crop plants. Environ Pollut 152:32–40

    Article  PubMed  CAS  Google Scholar 

  34. Pedron F, Petruzzelli G, Barbafieri M, Tassi E (2009) Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Chemosphere 75:808–814

    Article  CAS  PubMed  Google Scholar 

  35. Xie QE, Yan XL, Liao XY, Li X (2009) The arsenic hyperaccumulator fern Pteris vittata L. Environ Sci Technol 43(22):8488–8495

    Article  CAS  PubMed  Google Scholar 

  36. Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 362:319–334

    Article  CAS  Google Scholar 

  37. Frers C (2009) El uso de plantas acuáticas en el tratamiento de aguas residuales. El Planeta Azul, Carmen de Areco

    Google Scholar 

  38. Dhote S, Dixit S (2009) Water quality improvement through macrophytes—a review. Environ Monit Assess 152:149–153

    Article  CAS  PubMed  Google Scholar 

  39. Krishna R, Fulekar MH, Pathank B (2012) Rhizofiltration: A green technology for remediation of heavy metals. Int J Innov BioSci 2(4):193–199

    Google Scholar 

  40. Dushenkov S, Kapulnik Y (2000) Phytofiltration of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley, New York, pp 89–106

    Google Scholar 

  41. Pratas J, Favas PJC, Paulo C, Rodrigues N, Prasad MNV (2012) Uranium accumulation by aquatic plants from uranium-contaminated water in Central Portugal. Int J Phytoremediat 14:221–234

    Article  CAS  Google Scholar 

  42. Favas PJC, Pratas J, Prasad MNV (2012) Accumulation of arsenic by aquatic plants in large-scale field conditions: Opportunities for phytoremediation and bioindication. Sci Total Environ 433:390–397

    Article  CAS  PubMed  Google Scholar 

  43. Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Din MFM, Taib SM et al (2015) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manage 163:125–133

    Article  CAS  PubMed  Google Scholar 

  44. Nie X, Dong F, Liu N, Liu M, Zhang D, Kang W et al (2015) Subcellular distribution of uranium in the roots of Spirodela punctata and surface interactions. Appl Surf Sci 347:122–130

    Article  CAS  Google Scholar 

  45. Crowley DE, Alvey S, Gilbert ES (1997) Rhizosphere ecology of xenobiotic-degrading microorganisms. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants. ACS Symposium Series, Washington, pp 20–36

    Chapter  Google Scholar 

  46. Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  47. Schnoor JL (2000) Phytostabilization of metals using hybrid poplar trees. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: Using plants to clean up the Environment. Wiley, New York, pp 133–150

    Google Scholar 

  48. Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362

    Article  Google Scholar 

  49. Brooks RR, Chiarucci A, Jaffré T (1998) Revegetation and stabilization of mine dumps and other degraded terrain. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, New York, pp 227–247

    Google Scholar 

  50. Prasad MNV (2015) Engineered phyto-covers as natural caps for containment of hazardous mine and municipal solid waste dump sites – possible energy sources. In: Öztürk M, Ashraf M, Aksoy A, Ahmad MSA (eds) Phytoremediation for green energy. Springer, Dordrecht, pp 55–68

    Google Scholar 

  51. ITRC (2003) Technical and regulatory guidance document for constructed treatment wetlands. Interstate Technology & Regulatory Council, Wetlands Team, p 199

    Google Scholar 

  52. Vymazal J (2009) The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol Eng 35:1–17

    Article  Google Scholar 

  53. Olguín EJ, Sánchez-Galván G (2010) Aquatic phytoremediation: Novel insights in tropical and subtropical regions. Pure Appl Chem 82(1):27–38

    Article  CAS  Google Scholar 

  54. Fonder N, Headley T (2013) The taxonomy of treatment wetlands: A proposed classification and nomenclature system. Ecol Eng 51:203–211

    Article  Google Scholar 

  55. Horne AJ (2000) Phytoremediation by constructed wetlands. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, New York, pp 13–39

    Google Scholar 

  56. Kadlec RH, Wallace SD (2008) Treatment wetlands, 2nd edn. CRC Press, Boca Raton, FL, p 366

    Book  Google Scholar 

  57. Vymazal J, Kröpfelová L (2008) Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Springer, Dordrecht, p 566

    Book  Google Scholar 

  58. Sobolewski A (1999) A review of processes responsible for metal removal in wetlands treating contaminated mine drainage. Int J Phytoremediat 1(1):19–51

    Article  CAS  Google Scholar 

  59. Nyquist J, Greger M (2009) A field study of constructed wetlands for preventing and treating acid mine drainage. Ecol Eng 35:630–642

    Article  Google Scholar 

  60. Adams A, Raman A, Hodgkins D (2013) How do the plants used in phytoremediation in constructed wetlands, a sustainable remediation strategy, perform in heavy-metal contaminated mine sites? Water Environ J 27(3):373–386

    CAS  Google Scholar 

  61. Zorrig W, Rabhi M, Ferchichi S, Smaoui A, Abdelly C (2012) Phytodesalination: a solution for salt-affected soils in arid and semi-arid regions. J Arid Land Stud 22:299–302

    Google Scholar 

  62. Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39:2661–2664

    Article  CAS  Google Scholar 

  63. Brooks RR, Robinson BH (1998) Aquatic phytoremediation by accumulator plants. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, New York, pp 203–226

    Google Scholar 

  64. Kikuchi T, Tanaka S (2012) Biological removal and recovery of toxic heavy metals in water environment. Crit Rev Environ Sci Technol 42:1007–1057

    Article  CAS  Google Scholar 

  65. Bracamonte SC, Domingo LM (2002) Plantas aquáticas de las lagunas y humedales de Castilla-La Mancha. Real Jardín Botánico, Junta de Comunidades de Castilla-La Mancha, Madrid, p 340

    Google Scholar 

  66. Dhir B (2013) Phytoremediation: Role of aquatic plants in environmental clean-up. Springer, New Delhi, p 111

    Book  Google Scholar 

  67. Arber A (1920) A study of aquatic angiosperms. Cambridge Univ. Press, Cambridge, p 436

    Google Scholar 

  68. Sculthorpe CD (1967) The biology of aquatic vascular plants. St. Martin’s Press, New York, p 610

    Google Scholar 

  69. Outridge PM, Noller BN (1991) Accumulation of toxic trace elements by freshwater vascular plants. Rev Environ Contam Toxicol 121:1–63

    CAS  Google Scholar 

  70. Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39:697–753

    Article  CAS  Google Scholar 

  71. Hutchinson GE (1975) A treatise on limnology, Vol 3: Limnological Botany. John Wiley & Sons, New York, p 672

    Google Scholar 

  72. Gray BR, Hill WR, Stewart AJ (2001) Effects of development time, biomass and ferromanganese oxides on nickel sorption by stream periphyton. Environ Pollut 112:61–71

    Article  CAS  PubMed  Google Scholar 

  73. Bradac P, Wagner B, Kistler D, Traber J, Behra R, Sigg L (2010) Cadmium speciation and accumulation in periphyton in a small stream with dynamic concentration variations. Environ Pollut 158:641–648

    Article  CAS  PubMed  Google Scholar 

  74. Stout L, Nüsslein K (2010) Biotechnological potential of aquatic plant-microbe interactions. Curr Opin Biotechnol 21:339–345

    Article  CAS  PubMed  Google Scholar 

  75. Krawczyk-Bärsch E, Lünsdorf H, Arnold T, Brendler V, Eisbein E, Jenk U, Zimmermann U (2011) The influence of biofilms on the migration of uranium in acid mine drainage (AMD) waters. Sci Total Environ 409:3059–3065

    Article  PubMed  CAS  Google Scholar 

  76. Castro MCR, Ureea G, Guasch H (2015) Influence of the interaction between phosphate and arsenate on periphyton's growth and its nutrient uptake capacity. Sci Total Environ 503–504:122–132

    Article  CAS  Google Scholar 

  77. Srivastava S, Bhargava A (2016) Biofilms and human health. Biotechnol Lett 38:1–22

    Article  CAS  PubMed  Google Scholar 

  78. Hedin RS, Nairn RW, Kleinmann RLP (1994) The passive treatment of coal mine drainage. U.S. Bureau of Mines Information, Circular 9389, p 35

    Google Scholar 

  79. Rai UN, Sinha S, Tripathi RD, Chandra P (1995) Wastewater treatability potential of some aquatic macrophytes: Removal of heavy metals. Ecol Eng 5(1):5–12

    Article  Google Scholar 

  80. Nyquist J, Greger M (2007) Uptake of Zn, Cu, and Cd in metal loaded Elodea canadensis. Environ Exp Bot 60:219–226

    Article  CAS  Google Scholar 

  81. Overall RA, Parry DL (2004) The uptake of uranium by Eleocharis dulcis (Chinese water chestnut) in the Ranger Uranium Mine constructed wetland filter. Environ Pollut 132:307–320

    Article  CAS  PubMed  Google Scholar 

  82. Entry JA, Vance NC, Hamilton MA, Zabowski D, Watrud LS, Adriano DC (1996) Phytoremediation of soil contaminated with low concentrations of radionuclides. Water Air Soil Pollut 88:167–176

    CAS  Google Scholar 

  83. Markert B (1993) Plants as biomonitors: indicators for heavy metals in the terrestrial environment. VCH, Weinheim, p 645

    Google Scholar 

  84. Cenci RM (2000) The use of aquatic moss (Fontinalis antipyretica) as monitor of contamination in standing and running waters: limits and advantages. J Limnol 60(Suppl 1):53–61

    Google Scholar 

  85. Fritioff Å, Greger M (2006) Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere 63:220–227

    Article  CAS  PubMed  Google Scholar 

  86. Rahman MA, Hasegawa H (2011) Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere 83:633–646

    Article  CAS  PubMed  Google Scholar 

  87. Tsezos M, Volesky B (1981) Biosorption of uranium and thorium. Biotechnol Bioeng 23:583–604

    Article  CAS  Google Scholar 

  88. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  PubMed  Google Scholar 

  89. Abia AA, Horsfall M Jr, Didi O (2003) The use of chemically modified and unmodified cassava waste for the removal of Cd, Cu and Zn ions from aqueous solution. Bioresource Technol 90(3):345–348

    Article  CAS  Google Scholar 

  90. Gamez G, Gardea-Torresdey JL, Tiemann KJ, Parsons J, Dokken K, Yacaman MJ (2003) Recovery of gold(III) from multi-elemental solutions by alfalfa biomass. Adv Environ Res 7(2):563–571

    Article  CAS  Google Scholar 

  91. Raize O, Argaman Y, Yannai S (2004) Mechanisms of biosorption of different heavy metals by brown marine macroalgae. Biotechnol Bioeng 87:451–458

    Article  CAS  PubMed  Google Scholar 

  92. Gardea-Torresdey JL, De La Rosa G, Peralta-Videa JR (2004) Use of phytofiltration technologies in the removal of heavy metals: A review. Pure Appl Chem 76(4):801–813

    Article  CAS  Google Scholar 

  93. Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    Article  CAS  Google Scholar 

  94. Srivastava S, Bhainsa KC, D’Souza SF (2010) Investigation of uranium accumulation potential and biochemical responses of an aquatic weed Hydrilla verticillata (L.f.) Royle. Bioresource Technol 101:2573–2579

    Article  CAS  Google Scholar 

  95. Olguín EJ, Sánchez-Galván G (2012) Heavy metal removal in phytofiltration and phycoremediation: The need to differentiate between bioadsorption and bioaccumulation. New Biotechnol 30(1):3–8

    Article  CAS  Google Scholar 

  96. Ungureanu G, Santos S, Boaventura R, Botelho C (2015) Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. J Environ Manage 151:326–342

    Article  CAS  PubMed  Google Scholar 

  97. Ebbs SD, Brady DJ, Kochian LV (1998) Role of uranium speciation in the uptake and translocation of uranium by plants. J Exp Bot 49:1183–1190

    Article  CAS  Google Scholar 

  98. Li PF, Mao ZY, Rao XJ, Wang XM, Min MZ, Qiu LW, Liu ZL (2004) Biosorption of uranium by lake-harvested biomass from a cyanobacterium bloom. Bioresource Technol 94:193–195

    Article  CAS  Google Scholar 

  99. Sawalha MF, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2008) Removal of copper, lead, and zinc from contaminated water by saltbush biomass. Analysis of the optimum binding, stripping, and binding mechanism. Bioresour Technol 99(10):4438–4444

    Article  CAS  PubMed  Google Scholar 

  100. Marchand L, Mench M, Jacob DL, Otte ML (2010) Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review. Environ Pollut 158:3447–3461

    Article  CAS  PubMed  Google Scholar 

  101. Kumar D, Gaur JP (2011) Metal biosorption by two cyanobacterial mats in relation to pH, biomass concentration, pretreatment and reuse. Bioresource Technol 102:2529–2535

    Article  CAS  Google Scholar 

  102. Wang J, Hu X, Wang J, Bao Z, Xie S, Yang J (2010) The tolerance of Rhizopus arrihizus to U(VI) and biosorption beaviour of U(VI) onto R. arrihizus. Biochem Eng J 51:19–23

    Article  CAS  Google Scholar 

  103. Ha NTH, Sakakibara M, Sano S (2011) Accumulation of indium and other heavy metals by Eleocharis acicularis: An option for phytoremediation and phytomining. Bioresource Technol 102:2228–2234

    Article  CAS  Google Scholar 

  104. Mirza N, Pervez A, Mahmood Q, Shah MM, Shafqat MN (2011) Ecological restoration of arsenic contaminated soil by Arundo donax L. Ecol Eng 37:1949–1956

    Article  Google Scholar 

  105. Xue PY, Yan CZ (2011) Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle. Chemosphere 85:1176–1181

    Article  CAS  PubMed  Google Scholar 

  106. Tu S, Ma LQ (2004) Comparison of arsenic and phosphate uptake and distribution in arsenic hyperaccumulating and nonhyperaccumulating fern. J Plant Nutr 27(7):1227–1242

    Article  CAS  Google Scholar 

  107. Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Miner Eng 22:1007–1019

    Article  CAS  Google Scholar 

  108. Morais I, Campos JS, Favas PJC, Pratas J, Pita F, Prasad MNV (2015) Nickel accumulation by Alyssum serpyllifolium subsp. lusitanicum (Brassicaceae) from serpentine soils of Bragança and Morais (Portugal) ultramafic massifs: plant-soil relationships and prospects for phytomining. Aust J Bot 63(2):17–30

    CAS  Google Scholar 

  109. OECD (2002) Environmental remediation of uranium production facilities. OECD Nuclear Energy Agency, International Atomic Energy Agency, Paris, p 323

    Book  Google Scholar 

  110. Cardwell AJ, Hawker DW, Greenway M (2002) Metal accumulation in aquatic macrophytes from Southeast Queensland, Australia. Chemosphere 48:653–663

    Article  CAS  PubMed  Google Scholar 

  111. Abhilash PC, Pandey VC, Srivastava P, Rakesh PS, Chandran S, Singh N, Thomas AP (2009) Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. J Hazard Mater 170(2-3):791–797

    Article  CAS  PubMed  Google Scholar 

  112. Pratas J, Paulo C, Favas PJC, Venkatachalam P (2014) Potential of aquatic plants for phytofiltration of uranium-contaminated waters in laboratory conditions. Ecol Eng 69:170–176

    Article  Google Scholar 

  113. Malar S, Vikram SS, Favas PJC, Perumal V (2014) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud 55:54

    Google Scholar 

  114. Malar S, Sahi SV, Favas PJC, Venkatachalam P (2015) Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)]. Environ Sci Pollut Res 22:4597–4608

    Article  CAS  Google Scholar 

  115. Chowdhury R, Favas PJC, Pratas J, Jonathan MP, Ganesh PS, Sarkar SK (2015) Accumulation of trace metals by mangrove plants in Indian Sundarban Wetland: Prospects for phytoremediation. Int J Phytoremediat 17:885–894

    Article  CAS  Google Scholar 

  116. Rodriguez-Hernandez MC, Bonifas I, Alfaro-De la Torre MC, Flores-Flores JL, Bañuelos-Hernández B, Patiño-Rodríguez O (2015) Increased accumulation of cadmium and lead under Ca and Fe deficiency in Typha latifolia: A study of two pore channel (TPC1) gene responses. Environ Exp Bot 115:38–48

    Article  CAS  Google Scholar 

  117. Sasmaz M, Topal EIA, Obek E, Sasmaz A (2015) The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey. J Environ Manage 163:246–253

    Article  CAS  PubMed  Google Scholar 

  118. González CI, Maine MA, Cazenave J, Hadad HR, Benavides MP (2015) Ni accumulation and its effects on physiological and biochemical parameters of Eichhornia crassipes. Environ Exp Bot 117:20–27

    Article  CAS  Google Scholar 

  119. Jha VN, Tripathi RM, Sethy NK, Sahoo SK (2016) Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India. Sci Total Environ 539:175–184

    Article  CAS  PubMed  Google Scholar 

  120. Paulo C (2006) Selecção de plantas aquáticas e perspectivas na fitorremediação de escorrências uraníferas (Aquatic plant selection and perspective in uranium contaminated water phytoremediation), Master thesis. Instituto Superior Técnico, Lisboa

    Google Scholar 

  121. Favas PJC, Pratas JS (2007) Uptake of heavy metals, and arsenic by an aquatic plant in the vicinity of the abandoned Ervedosa tin mine (NE Portugal). Geochim Cosmochim Acta 71(15):A270–A270

    Google Scholar 

  122. Paulo C, Pratas J (2008) Environmental contamination control of water drainage from uranium mines by aquatic plants. In: Prasad MNV (ed) Trace elements as contaminants and nutrients: Consequences in ecosystems and human health. Wiley, Chichester, pp 623–651

    Chapter  Google Scholar 

  123. Pratas J, Favas P, Rodrigues N, Prasad M (2010) Arsenic accumulation in aquatic plants (Central Portugal). In: Kallel A, Hassairi A, Bulucea CA, Mastorakis N (eds) Advances in waste management. WSEAS Press, Kantaoui, pp 73–76

    Google Scholar 

  124. Pratas J, Favas P, Rodrigues N, Prasad M, Freitas H (2010) Phytofiltration of uranium by aquatic plants of Central Portugal. In: Kallel A, Hassairi A, Bulucea CA, Mastorakis N (eds) Advances in waste management. WSEAS Press, Kantaoui, pp 77–80

    Google Scholar 

  125. Rodrigues N, Pratas J, Tavares L, Branches A (2010) Natural immobilization of uranium in streams. WSEAS Trans Environ Dev 6(7):539–548

    CAS  Google Scholar 

  126. Carvalho FP, Oliveira JM, Malta M (2011) Radionuclides in plants growing on sludge and water from uranium mine water treatment. Ecol Eng 37:1058–1063

    Article  Google Scholar 

  127. Favas PJC, Pratas J, Prasad MNV, D’Souza R, Varun M, Paul M (2013) Potential for phytoremediation of multi-element contaminated water using aquatic plants. Curr Opin Biotech 24S:S128

    Article  Google Scholar 

  128. Teixeira S, Vieira MN, Marques JE, Pereira R (2014) Bioremediation of an iron-rich mine effluent by Lemna minor. Int J Phytoremediat 16(12):1228–1240

    Article  CAS  Google Scholar 

  129. Favas PJC, Pratas J, Varun M, D’Souza R, Paul MS (2014) Accumulation of uranium by aquatic plants in field conditions: Prospects for phytoremediation. Sci Total Environ 470–471:993–1002

    Article  PubMed  CAS  Google Scholar 

  130. Adriano D (2001) Trace elements in terrestrial environments: Biogeochemistry, bioavailability and risks of metals. Springer, New York, p 867

    Book  Google Scholar 

  131. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  132. Sharma VK, Sohn M (2009) Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environ Int 35:743–759

    Article  CAS  PubMed  Google Scholar 

  133. Rahman MA, Hasegawa H, Ueda K, Maki T, Okumura C, Rahman MM (2007) Arsenic accumulation in duckweed (Spirodela polyrhiza L.): A good option for phytoremediation. Chemosphere 69:493–499

    Article  CAS  PubMed  Google Scholar 

  134. García J, Rousseau DPL, Morató J, Lesage E, Matamoros V, Bayona JM (2010) Contaminant removal processes in subsurface-flow constructed wetlands: a review. Crit Rev Environ Sci Technol 40:561–661

    Article  CAS  Google Scholar 

  135. Singhakant C, Koottatep T, Satayavivad J (2009) Enhanced arsenic removals through plant interactions in subsurface-flow constructed wetlands. J Environ Sci Health 44:163–169

    Article  CAS  Google Scholar 

  136. Sasmaza A, Obek E (2009) The accumulation of arsenic, uranium, and boron in Lemna gibba L. exposed to secondary effluents. Ecol Eng 35:1564–1567

    Article  Google Scholar 

  137. Rahman KZ, Wiessner A, Kuschk P, Afferden M, Mattusch J, Müller RA (2011) Fate and distribution of arsenic in laboratory-scale subsurface horizontal-flow constructed wetlands treating an artificial wastewater. Ecol Eng 37:1214–1224

    Article  Google Scholar 

  138. Hozhina EI, Khramov AA, Gerasimov PA, Kumarkov AA (2001) Uptake of heavy metals, arsenic, and antimony by aquatic plants in the vicinity of ore mining and processing industries. J Geochem Explor 74:153–162

    Article  CAS  Google Scholar 

  139. Adhikari AR, Acharya K, Shanahan SA, Zhou X (2011) Removal of nutrients and metals by constructed and naturally created wetlands in the Las Vegas Valley, Nevada. Environ Monit Assess 180:97–113

    Article  CAS  PubMed  Google Scholar 

  140. Wang J, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

  142. Dhankher OP (2005) Arsenic metabolism in plants: an inside story. New Phytol 168:503–505

    Article  CAS  PubMed  Google Scholar 

  143. Lizama AK, Fletcher TD, Sun G (2011) Removal processes for arsenic in constructed wetlands. Chemosphere 84:1032–1043

    Article  CAS  Google Scholar 

  144. Reay PF (1972) Accumulation of arsenic from arsenic-rich natural waters by aquatic plants. J Appl Ecol 9:557–565

    Article  Google Scholar 

  145. Robinson BH, Brooks RR, Outred HA, Kirkman JH (1995) The distribution and fate of arsenic in the Waikato river system, North Island, New Zealand. Chem Spec Bioavailab 7:89–96

    CAS  Google Scholar 

  146. Mkandawire M, Taubert B, Dudel EG (2004) Capacity of Lemna gibba L. (duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Int J Phytoremediat 6:347–362

    Article  CAS  Google Scholar 

  147. Robinson B, Kim N, Marchetti M, Moni C, Schroeter L, Dijssel C, Milne G, Clothier B (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ Exp Bot 58:206–215

    Article  CAS  Google Scholar 

  148. Robinson BH, Duwig C, Bolan NS, Kannathasan M, Saravanan A (2003) Uptake of arsenic by New Zealand watercress (Lepidium sativum). Sci Total Environ 301:67–73

    Article  CAS  PubMed  Google Scholar 

  149. Alvarado S, Guédez M, Lué-Merú MP, Nelson G, Alvaro A, Jesús AC, Gyula Z (2008) Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresource Technol 99:8436–8440

    Article  CAS  Google Scholar 

  150. Islam MS, Ueno Y, Sikder MT, Kurasaki M (2013) Phytofiltration of arsenic and cadmium from the water environment using Micranthemum umbrosum (J.F. Gmel) S.F. Blake as a hyperaccumulator. Int J Phytoremediat 15(10):1010–1021

    Article  CAS  Google Scholar 

  151. Farnese FS, Oliveira JA, Lima FS, Leão GA, Gusman GS, Silva LC (2014) Evaluation of the potential of Pistia stratiotes L. (water lettuce) for bioindication and phytoremediation of aquatic environments contaminated with arsenic. Braz J Biol 74:S103–S112

    Article  Google Scholar 

  152. Chen G, Liu X, Brookes PC, Xu J (2015) Opportunities for phytoremediation and bioindication of arsenic contaminated water using a submerged aquatic plant: Vallisneria natans (Lour.) H.Hara. Int J Phytoremediat 17:249–255

    Article  CAS  Google Scholar 

  153. Wells JM, Richardson DHS (1985) Anion accumulation by the moss Hylocomium splendens: uptake and competition studies involving arsenate, selenate, selenite, phosphate, sulphate and sulphite. New Phytol 101:571–583

    Article  CAS  Google Scholar 

  154. Mukherjee S, Kumar S (2005) Arsenic uptake potential of water lettuce (Pistia stratiotes L.). Int J Environ Stud 62:249–258

    Article  CAS  Google Scholar 

  155. Srivastava S, Sounderajan S, Udas A, Suprasanna P (2014) Effect of combinations of aquatic plants (Hydrilla, Ceratophyllum, Eichhornia, Lemna and Wolffia) on arsenic removal in field conditions. Ecol Eng 73:297–301

    Article  Google Scholar 

  156. WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva, p 564

    Google Scholar 

  157. Malczewska B, Myers O, Shuey C, Lewis J (2003) Recommendations for a uranium health-based ground water standard. Ground Water Quality Bureau, Environment Department, New Mexico, p 71

    Google Scholar 

  158. Kalin M, Wheeler WN, Meinrath G (2005) The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioact 78:151–177

    Article  CAS  PubMed  Google Scholar 

  159. Schöner A, Noubactep C, Büchel G, Sauter M (2009) Geochemistry of natural wetlands in former uranium milling sites (eastern Germany) and implications for uranium retention. Chem Erde-Geochem 69:91–107

    Article  CAS  Google Scholar 

  160. Bhalara PD, Punetha D, Balasubramanian K (2014) A review of potential remediation techniques for uranium(VI) ion retrieval from contaminated aqueous environment. J Environ Chem Eng 2:1621–1634

    Article  CAS  Google Scholar 

  161. Durakoviae A (1999) Medical effects of internal contamination with uranium. Croatian Med J 40(1):49–66

    Google Scholar 

  162. Laurette J, Larue C, Llorens I, Jaillard D, Jouneau P-H, Bourguignon J, Carrière M (2012) Speciation of uranium in plants upon root accumulation and root-to-shoot translocation: A XAS and TEM study. Environ Exp Bot 77:87–95

    Article  CAS  Google Scholar 

  163. Laurette J, Larue C, Mariet C, Brisset F, Khodja H, Bourguignon J, Carrière M (2012) Influence of uranium speciation on its accumulation and translocation in three plant species: Oilseed rape, sunflower and wheat. Environ Exp Bot 77:96–107

    Article  CAS  Google Scholar 

  164. Markich SJ (2013) Water hardness reduces the accumulation and toxicity of uranium in a freshwater macrophyte (Ceratophyllum demersum). Sci Total Environ 443:582–589

    Article  CAS  PubMed  Google Scholar 

  165. Mangini A, Sonntag C, Bertsch G, Mueller E (1979) Evidence for a higher natural uranium content in world rivers. Nature 278:337–339

    Article  CAS  Google Scholar 

  166. Palmer MR, Edmond JM (1993) Uranium in river water. Geochim Cosmochim Acta 57:4947–4955

    Article  CAS  Google Scholar 

  167. Pettersson HBL, Johnston HA, Murray AS (1993) Uptake of uranium and thorium series radionuclides by the water lily, Nymphaea violacea. J Environ Radioact 19:85–108

    Article  CAS  Google Scholar 

  168. Miretzky P, Saralegui A, Cirelli AF (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals Buenos Aires, Argentina. Chemosphere 57(8):997–1005

    Article  CAS  PubMed  Google Scholar 

  169. Mkandawire M, Dudel EG (2005) Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336:81–89

    Article  CAS  PubMed  Google Scholar 

  170. Kondo K, Kawabata H, Ueda S, Hasegawa H, Inaba J, Mitamura O, Seike Y, Ohmomo Y (2003) Distribution of aquatic plants and absorption of radionuclides by plants through the leaf surface in brackish Lake Obuchi, Japan, bordered by nuclear fuel cycle facilities. J Radioanal Nucl Chem 257:305–312

    Article  CAS  Google Scholar 

  171. Gerth A, Hebner A, Kiessig G, Zellmer A (2005) Passive treatment of minewater at the Schlema-Alberoda site. In: Merkel B, Hasche-Berge A (eds) Uranium in the environment: Mining impact and consequences. Springer, Berlin, pp 409–414

    Google Scholar 

  172. Černe M, Smodiš B, Štrok M (2011) Uptake of radionuclides by a common reed (Phragmites australis (Cav.) Trin. Ex Steud.) grown in the vicinity of the former uranium mine at Žirovski vrh. Nucl Eng Des 241:1282–1286

    Article  CAS  Google Scholar 

  173. Bhat SV, Melo JS, Chaugule BB, D’Souza SF (2008) Biosorption characteristics of uranium(VI) from aqueous medium onto Catenella repens, a red alga. J Hazard Mater 158:628–635

    Article  CAS  PubMed  Google Scholar 

  174. Bhainsa KC, D’Souza SF (2001) Uranium (VI) biosorption by dried roots of Eichhornia crassipes (water hyacinth). J Environ Sci Health 36:1621–1631

    Article  CAS  Google Scholar 

  175. Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M (2005) Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies. Bioresource Technol 96:1241–1248

    Article  CAS  Google Scholar 

  176. Burton MAS, Peterson PJ (1979) Metal accumulation by aquatic bryophytes from polluted mine streams. Environ Pollut 19:39–46

    Article  CAS  Google Scholar 

  177. Say PJ, Harding JPC, Whitton BA (1981) Aquatic mosses as monitors of heavy metal contamination in the river Etherow. Great Britain Environ Pollut Ser B 2:295–307

    Article  CAS  Google Scholar 

  178. Mouvet C (1984) Accumulation of chromium and copper by the aquatic moss Fontinalis antipyretica L. ex Hedw. transplanted in a metal-contaminated river. Environ Technol Lett 5:541–548

    Article  CAS  Google Scholar 

  179. Goncalves EPR, Boaventura RAR (1998) Uptake and release kinetics of copper by the aquatic moss Fontinalis antipyretica. Water Res 32(4):1305–13

    Article  CAS  Google Scholar 

  180. Siebert A, Bruns I, Krauss G-J, Miersch J, Markert B (1996) The use of the aquatic moss Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals: 1. Fundamental investigations into heavy metal accumulation in Fontinalis antipyretica L. ex Hedw. Sci Total Environ 177:137–144

    Article  CAS  Google Scholar 

  181. Bruns I, Friese K, Markert B, Krauss G-J (1997) The use of Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals: 2. Heavy metal accumulation and physiological reaction of Fontinalis antipyretica L. ex Hedw. in active biomonitoring in the River Elbe. Sci Total Environ 204:161–176

    Article  CAS  Google Scholar 

  182. Vázquez MD, Wappelhorst O, Markert B (2004) Determination of 28 elements in aquatic moss Fontinalis antipyretica Hedw. and water from the upper reaches of the river Nysa (CZ, D), by ICPMS, ICP-OES and AAS. Water Air Soil Pollut 152:153–172

    Article  Google Scholar 

  183. Gapeeva MV, Dolotov AV, Chemeris EV (2010) Prospects of using mosses (Fontinalis antipyretica Hedw. and Pylaisia polyantha (Hedw.) Bruch et al.) as indicators of environmental contamination with heavy metals. Russ J Ecol 41(1):28–31

    Article  CAS  Google Scholar 

  184. Díaz S, Villares R, Carballeira A (2012) Uptake kinetics of As, Hg, Sb, and Se in the aquatic moss Fontinalis antipyretica Hedw. Water Air Soil Poll 223:3409–3423

    Article  CAS  Google Scholar 

  185. Mechora Š, Germ M, Stibilj V (2012) Selenium and its species in the aquatic moss Fontinalis antipyretica. Sci Total Environ 438:122–126

    Article  CAS  PubMed  Google Scholar 

  186. Uysal Y, Taner F (2009) Effect of pH, temperature, and lead concentration on the bioremoval of lead from water using Lemna minor. Int J Phytoremediat 11:591–608

    Article  CAS  Google Scholar 

  187. Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  188. Ekmekci Y, Tanyolac D, Ayhan B (2009) A crop tolerating oxidative stress induced by excess lead: maize. Acta Physiol Plant 31:319–330

    Article  CAS  Google Scholar 

  189. Mishra S, Srivastava S, Tripathi R, Kumar R, Seth C, Gupta D (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    Article  CAS  PubMed  Google Scholar 

  190. Peng K, Luo C, Lou L, Li X, Shen Z (2008) Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. And their potential use for contamination indicators and in wastewater treatment. Sci Total Environ 392:22–29

    Article  CAS  PubMed  Google Scholar 

  191. Piotrowska A, Bajguz A, Godlewska B, Czerpak R, Kaminska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lamnaceae). Environ Exp Bot 66:507–513

    Article  CAS  Google Scholar 

  192. Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macropyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032

    Article  CAS  PubMed  Google Scholar 

  193. Alonso-Castro AJ, Carranza-Álvarez C, Alfaro-De la Torre MC, Chávez-Guerrero L, García-De la Cruz RF (2009) Removal and accumulation of cadmium and lead by Typha latifolia exposed to single and mixed metal solutions. Arch Environ Contam Toxicol 57:688–696

    Article  CAS  PubMed  Google Scholar 

  194. Lyubenova L, Pongrac P, Vogel-Mikuš K, Mezek GK, Vavpetič P, Grlj N, Regvar M, Pelicon P, Schröder P (2013) The fate of arsenic, cadmium and lead in Typha latifolia: A case study on the applicability of micro-PIXE in plant ionomics. J Hazard Mater 248–249:371–378

    Article  PubMed  CAS  Google Scholar 

  195. Smolyakov BS (2012) Uptake of Zn, Cu, Pb, and Cd by water hyacinth in the initial stage of water system remediation. Appl Geochem 27:1214–1219

    Article  CAS  Google Scholar 

  196. Augustynowicz J, Tokarz K, Baran A, Płachno BJ (2014) Phytoremediation of water polluted by thallium, cadmium, zinc, and lead with the use of macrophyte Callitriche cophocarpa. Arch Environ Contam Toxicol 66:572–581

    Article  CAS  PubMed  Google Scholar 

  197. Alloway BJ (1995) Soil processes and the behavior of metals. In: Alloway BJ (ed) Heavy metals in soils. Blackie, Glasgow, pp 38–57

    Chapter  Google Scholar 

  198. Succuro JS, McDonald SS, Lu CR (2009) Phytoremediation: The wave of the future. In: Kirakosyan A, Kaufman PB (eds) Recent advances in plant biotechnology. Springer, Dordrecht, pp 119–135

    Chapter  Google Scholar 

  199. Samecka-Cymerman A, Kempers AJ (2001) Bioindication of heavy metals with aquatic macrophytes: The case of a stream polluted with power plant sewages in Poland. J Toxicol Environ Health 62(1):57–67

    Article  CAS  Google Scholar 

  200. Kamal M, Ghaly AE, Mahmoud N, Côté R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039

    Article  CAS  PubMed  Google Scholar 

  201. Hou W, Chen X, Song G, Wang Q, Chang CC (2007) Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol Biochem 45:62–69

    Article  CAS  PubMed  Google Scholar 

  202. Khellaf N, Zerdaoui M (2009) Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. Bioresource Technol 100:6137–6140

    Article  CAS  Google Scholar 

  203. Thiébaut G, Gross Y, Gierlinski P, Boiché A (2010) Accumulation of metals in Elodea canadensis and Elodea nuttallii: Implications for plant–macroinvertebrate interactions. Sci Total Environ 408:5499–5505

    Article  PubMed  CAS  Google Scholar 

  204. Zhu YL, Zayed AM, Quian JH, De Souza M, Terry N (1999) Phytoaccumulation of trace metals by wetland plants: II. Water hyacinth. J Environ Qual 28:339–344

    Article  CAS  Google Scholar 

  205. Hu C, Zhang L, Hamilton D, Zhou W, Yang T, Zhu D (2007) Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart.). Hydrobiologia 579:211–218

    Article  CAS  Google Scholar 

  206. Mishra VK, Tripathi BD (2009) Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). J Hazard Mater 164:1059–1063

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo J. C. Favas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Favas, P.J.C., Pratas, J., Paul, M.S., Sarkar, S.K., Prasad, M.N.V. (2016). Phytofiltration of Metal(loid)-Contaminated Water: The Potential of Native Aquatic Plants. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-40148-5_11

Download citation

Publish with us

Policies and ethics