Skip to main content

Suprachoroidal Retinal Prostheses

  • Chapter
  • First Online:
Artificial Vision

Abstract

Visual prostheses are currently being developed by a number of international teams for the restoration of basic visual function to those with profound vision impairment or blindness. In this exciting field of research and development, a number of unique device designs and surgical placements have been developed.

This chapter discusses the engineering specifications, preclinical testing and clinical trial outcomes for suprachoroidal prostheses. These implants are placed between the posterior blood supply of the eye (choroid) and the outer white layer of the eye (sclera), with this surgical location primarily being chosen for stability and safety. In the pilot study of a prototype suprachoroidal implant, which was held in Australia between 2012 and 2014, there were no unexpected intraocular serious adverse events in the three implanted participants. Future trials will examine safety and efficacy of implants with larger numbers of electrodes in larger cohorts of participants with profound vision loss from retinitis pigmentosa. It is also hoped that in the future suprachoroidal prostheses may be able to be used in people with some residual vision (such as in age-related macular degeneration).

The work described in this chapter, conducted by the Bionic Vision Australia (BVA) consortium, deals exclusively with suprachoroidal implantation of a stimulating array. Data are presented from the surgical implantation and psychophysical responses of a 24-channel percutaneously connected prototype device implanted in three subjects. The architecture of two future-generation fully-implantable suprachoroidal prostheses, a 44-channel device and the 99-channel ‘Phoenix’ device are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Bionic Vision Australia consortium consists of the University of Melbourne, the University of New South Wales, The Centre for Eye Research Australia, The Bionics Institute and NICTA. Supporting participants are the Royal Victorian Eye and Ear Hospital, the National Vision Research Institute of Australia and the University of Western Sydney. The BVA consortium was funded between 2010 and 2015 by the Australian Research Council, through its Special Research Initiative in Bionic Vision Science and Technology Program.

References

  1. Humayun MS, Dorn JD, da Cruz L, et al. Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology. 2012;119(4):779–88.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stingl K, Bartz-Schmidt KU, Besch D, et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci. 2013;280(1757):20130077.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Palanker D, Vankov A, Huie P, et al. Design of a high-resolution optoelectronic retinal prosthesis. J Neural Eng. 2005;2(1):S105–20.

    Article  PubMed  Google Scholar 

  4. Ayton LN, Blamey PJ, Guymer RH, et al. First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS One. 2014;9(12):e115239.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fujikado T, Kamei M, Sakaguchi H, et al. Clinical trial of chronic implantation of suprachroidal-transretinal stimulation system for retinal prosthesis. Sensor Mater. 2012;24(4):181–7.

    Google Scholar 

  6. Hadjinicolaou AE, Leung RT, Garrett DJ, et al. Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Biomaterials. 2012;33(24):5812–20.

    Article  CAS  PubMed  Google Scholar 

  7. Garrett DJ, Saunders AL, McGowan C, et al. In vivo biocompatibility of boron doped and nitrogen included conductive-diamond for use in medical implants. J Biomed Mater Res B Appl Biomater. 2016;104(1):19–26.

    Google Scholar 

  8. Ganesan K, Garrett DJ, Ahnood A, et al. An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis. Biomaterials. 2014;35(3):908–15.

    Article  CAS  PubMed  Google Scholar 

  9. Lichter SG, Escudie MC, Stacey AD, et al. Hermetic diamond capsules for biomedical implants enabled by gold active braze alloys. Biomaterials. 2015;53:464–74.

    Article  CAS  PubMed  Google Scholar 

  10. Buch H, Vinding T, La Cour M, et al. Prevalence and causes of visual impairment and blindness among 9980 Scandinavian adults: the Copenhagen City Eye Study. Ophthalmology. 2004;111(1):53–61.

    Article  PubMed  Google Scholar 

  11. Friedman DS, O'Colmain BJ, Munoz B, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122(4):564–72.

    Article  PubMed  Google Scholar 

  12. Bressler NM. Age-related macular degeneration is the leading cause of blindness. JAMA. 2004;291(15):1900–1.

    Article  CAS  PubMed  Google Scholar 

  13. Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–31.

    Article  CAS  PubMed  Google Scholar 

  14. Perez Fornos A, Sommerhalder J, da Cruz L, et al. Temporal properties of visual perception on electrical stimulation of the retina. Invest Ophthalmol Vis Sci. 2012;53(6):2720–31.

    Article  PubMed  Google Scholar 

  15. Ray A, Lee EJ, Humayun MS, et al. Continuous electrical stimulation decreases retinal excitability but does not alter retinal morphology. J Neural Eng. 2011;8(4):045003.

    Article  CAS  PubMed  Google Scholar 

  16. Dacey DM, Petersen MR. Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proc Natl Acad Sci U S A. 1992;89(20):9666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saunders AL, Williams CE, Heriot W, et al. Development of a surgical procedure for implantation of a prototype suprachoroidal retinal prosthesis. Clin Experiment Ophthalmol. 2014;42(7):665–74.

    Article  PubMed  Google Scholar 

  18. Sakaguchi H, Fujikado T, Fang X, et al. Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes. Jpn J Ophthalmol. 2004;48(3):256–61.

    Article  PubMed  Google Scholar 

  19. Zhou JA, Woo SJ, Park SI, et al. A suprachoroidal electrical retinal stimulator design for long-term animal experiments and in vivo assessment of its feasibility and biocompatibility in rabbits. J Biomed Biotechnol. 2008;2008:547428.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wong YT, Chen SC, Seo JM, et al. Focal activation of the feline retina via a suprachoroidal electrode array. Vision Res. 2009;49(8):825–33.

    Article  CAS  PubMed  Google Scholar 

  21. Fujikado T, Kamei M, Sakaguchi H, et al. Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2011;52(7):4726–33.

    Article  PubMed  Google Scholar 

  22. Shepherd RK, Shivdasani MN, Nayagam DA, et al. Visual prostheses for the blind. Trends Biotechnol. 2013;31(10):562–71.

    Article  CAS  PubMed  Google Scholar 

  23. Villalobos J, Allen PJ, McCombe MF, et al. Development of a surgical approach for a wide-view suprachoroidal retinal prosthesis: evaluation of implantation trauma. Graefes Arch Clin Exp Ophthalmol. 2012;250(3):399–407.

    Article  PubMed  Google Scholar 

  24. Cicione R, Shivdasani MN, Fallon JB, et al. Visual cortex responses to suprachoroidal electrical stimulation of the retina: effects of electrode return configuration. J Neural Eng. 2012;9(3):036009.

    Article  PubMed  Google Scholar 

  25. Shivdasani MN, Fallon JB, Luu CD, et al. Visual cortex responses to single- and simultaneous multiple-electrode stimulation of the retina: implications for retinal prostheses. Invest Ophthalmol Vis Sci. 2012;53(10):6291–300.

    Article  PubMed  Google Scholar 

  26. Shivdasani MN, Luu CD, Cicione R, et al. Evaluation of stimulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis. J Neural Eng. 2010;7(3):036008.

    Article  PubMed  Google Scholar 

  27. Villalobos J, Nayagam DA, Allen PJ, et al. A wide-field suprachoroidal retinal prosthesis is stable and well tolerated following chronic implantation. Invest Ophthalmol Vis Sci. 2013;54(5):3751–62.

    Article  PubMed  Google Scholar 

  28. Leung RT, Nayagam DA, Williams RA, et al. Safety and efficacy of explanting or replacing suprachoroidal electrode arrays in a feline model. Clin Experiment Ophthalmol. 2015;43(3):247–58.

    Article  PubMed  Google Scholar 

  29. Nayagam DA, Williams RA, Allen PJ, et al. Chronic electrical stimulation with a suprachoroidal retinal prosthesis: a preclinical safety and efficacy study. PLoS One. 2014;9(5):e97182.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ayton LN, Guymer RH, Luu CD. Choroidal thickness profiles in retinitis pigmentosa. Clin Experiment Ophthalmol. 2013;41(4):396–403.

    Article  PubMed  Google Scholar 

  31. Shivdasani MN, Sinclair NC, Dimitrov PN, et al. Factors affecting perceptual thresholds in a suprachoroidal retinal prosthesis. Invest Ophthalmol Vis Sci. 2014;55(10):6467–81.

    Article  PubMed  Google Scholar 

  32. Ayton LN, McSweeney SC, O'Hare F, et al. A prototype suprachoroidal retinal prosthesis enables improvement in a tabletop object detection task. Invest Ophthal Vis Sci. 2015;56(7):4782.

    Google Scholar 

  33. Ayton LN, Finger RP, Deverell L, et al. Developing a very low vision orientation and mobility test battery as part of the Low Vision Assessment of Daily Activities (LoVADA) protocol. Optom Vis Sci. 2016. [Epub ahead of print].

    Google Scholar 

  34. Finger RP, Tellis B, Crewe J, et al. Developing the impact of vision impairment-very low vision (IVI-VLV) questionnaire as part of the LoVADA protocol. Invest Ophthalmol Vis Sci. 2014;55(10):6150–8.

    Article  PubMed  Google Scholar 

  35. Suaning GJ, Hallum LE, Preston P, et al. An efficient multiplexing method for addressing large numbers of electrodes in a visual neuroprosthesis. Conf Proc IEEE Eng Med Biol Soc. 2004;2:4165–8.

    Google Scholar 

  36. Lovell NH, Dokos S, Cheng E, et al. Simulation of parallel current injection for use in a vision prosthesis. Conf Proc IEEE Eng Med Biol Soc. 2005; 458–61.

    Google Scholar 

  37. Matteucci PB, Chen SC, Tsai D, et al. Current steering in retinal stimulation via a quasimonopolar stimulation paradigm. Invest Ophthalmol Vis Sci. 2013;54(6):4307–20.

    Article  PubMed  Google Scholar 

  38. Abramian M, Lovell NH, Habib A, et al. Quasi-monopolar electrical stimulation of the retina: a computational modelling study. J Neural Eng. 2014;11(2):025002.

    Article  PubMed  Google Scholar 

  39. Habib AG, Cameron MA, Suaning GJ, et al. Spatially restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar electrode return configuration. J Neural Eng. 2013;10(3):036013.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren N. Ayton PhD, B.Optom, FAAO, FACO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ayton, L.N. et al. (2017). Suprachoroidal Retinal Prostheses. In: Gabel, V. (eds) Artificial Vision. Springer, Cham. https://doi.org/10.1007/978-3-319-41876-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41876-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41874-2

  • Online ISBN: 978-3-319-41876-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics