Skip to main content

A Linear Optimization Procedure for an EMG-driven NeuroMusculoSkeletal Model Parameters Adjusting: Validation Through a Myoelectric Exoskeleton Control

  • Conference paper
  • First Online:
Haptics: Perception, Devices, Control, and Applications (EuroHaptics 2016)

Abstract

This paper presents a linear optimization procedure able to adapt a simplified EMG-driven NeuroMusculoSkeletal (NMS) model to the specific subject. The optimization procedure could be used to adjust a NMS model of a generic human articulation in order to predict the joint torque by using ElectroMyoGraphic (EMG) signals. The proposed approach was tested by modeling the human elbow joint with only two muscles. Using the cross-validation method, the adjusted elbow model has been validated in terms of both torque estimation performance and predictive ability. The experiments, conducted with healthy people, have shown both good performance and high robustness. Finally, the model was used to control directly and continuously a exoskeleton rehabilitation device through EMG signals. Data acquired during free movements prove the model ability to detect the human’s intention of movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basteris, A., Nijenhuis, S.M., Stienen, A., Buurke, J.H., Prange, G.B., Amirabdollahian, F.: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J. Neuroeng. Rehabil. 11(1), 111 (2014)

    Article  Google Scholar 

  2. Buchanan, T.S., Lloyd, D.G., Manal, K., Besier, T.F.: Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J. Appl. Biomech. 20(4), 367 (2004)

    Google Scholar 

  3. Buongiorno, D., Barsotti, M., Sotgiu, E., Loconsole, C., Solazzi, M., Bevilacqua, V., Frisoli, A.: A neuromusculoskeletal model of the human upper limb for a myoelectric exoskeleton control using a reduced number of muscles. In: 2015 IEEE World Haptics Conference (WHC), pp. 273–279, June 2015

    Google Scholar 

  4. Burdet, E., Franklin, D.W., Milner, T.E.: Human Robotics: Neuromechanics and Motor Control. MIT Press, Cambridge (2013)

    Google Scholar 

  5. Cavallaro, E.E., Rosen, J., Perry, J.C., Burns, S.: Real-time myoprocessors for a neural controlled powered exoskeleton arm. IEEE Trans. Biomed. Eng. 53(11), 2387–2396 (2006)

    Article  Google Scholar 

  6. Desrosiers, J., Bourbonnais, D., Corriveau, H., Gosselin, S., Bravo, G.: Effectiveness of unilateral and symmetrical bilateral task training for arm during the subacute phase after stroke: a randomized controlled trial. Clin. Rehabil. 19(6), 581–593 (2005)

    Article  Google Scholar 

  7. Englehart, K., Hudgins, B.: A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 50(7), 848–854 (2003)

    Article  Google Scholar 

  8. Fleischer, C., Hommel, G.: A human-exoskeleton interface utilizing electromyography. IEEE Trans. Robot. 24(4), 872–882 (2008)

    Article  Google Scholar 

  9. Frisoli, A., Rocchi, F., Marcheschi, S., Dettori, A., Salsedo, F., Bergamasco, M.: A new force-feedback arm exoskeleton for haptic interaction in virtual environments. In: Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pp. 195–201. IEEE (2005)

    Google Scholar 

  10. Hassani, W., Mohammed, S., Rifai, H., Amirat, Y.: Emg based approach for wearer-centered control of a knee joint actuated orthosis. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 990–995. IEEE (2013)

    Google Scholar 

  11. Hermens, H.J., Freriks, B., Merletti, R., Stegeman, D., Blok, J., Rau, G., Disselhorst-Klug, C., Hägg, G.: European recommendations for surface electromyography. Roessingh Res. Dev. 8(2), 13–54 (1999)

    Google Scholar 

  12. Hill, A.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B: Biol. Sci. 126(843), 136–195 (1938)

    Article  Google Scholar 

  13. Holzbaur, K.R., Murray, W.M., Delp, S.L.: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann. Biomed. Eng. 33(6), 829–840 (2005)

    Article  Google Scholar 

  14. Huang, V.S., Krakauer, J.W.: Robotic neurorehabilitation: a computational motor learning perspective. J. Neuroeng. Rehabil. 6(1), 5 (2009)

    Article  Google Scholar 

  15. Jarrassé, N., Proietti, T., Crocher, V., Robertson, J., Sahbani, A., Morel, G., Roby-Brami, A.: Robotic exoskeletons: a perspective for the rehabilitation of arm coordination in stroke patients. Front. Hum. Neurosci. 8, 947 (2014)

    Google Scholar 

  16. Kiguchi, K., Hayashi, Y.: An emg-based control for an upper-limb power-assist exoskeleton robot. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(4), 1064–1071 (2012)

    Article  Google Scholar 

  17. Leys, D., Hénon, H., Mackowiak-Cordoliani, M.A., Pasquier, F.: Poststroke dementia. Lancet Neurol. 4(11), 752–759 (2005)

    Article  Google Scholar 

  18. Lloyd, D.G., Besier, T.F.: An emg-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36(6), 765–776 (2003)

    Article  Google Scholar 

  19. Lo, A.C., Guarino, P.D., Richards, L.G., Haselkorn, J.K., Wittenberg, G.F., Federman, D.G., Ringer, R.J., Wagner, T.H., Krebs, H.I., Volpe, B.T., et al.: Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 362(19), 1772–1783 (2010)

    Article  Google Scholar 

  20. Loconsole, C., Leonardis, D., Barsotti, M., Solazzi, M., Frisoli, A., Bergamasco, M., Troncossi, M., Foumashi, M.M., Mazzotti, C., Castelli, V.P.: An emg-based robotic hand exoskeleton for bilateral training of grasp. In: World Haptics Conference (WHC), pp. 537–542. IEEE (2013)

    Google Scholar 

  21. Marchal-Crespo, L., Reinkensmeyer, D.J.: Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 6(1), 20 (2009)

    Article  Google Scholar 

  22. Moreland, J.D., Thomson, M.A., Fuoco, A.R.: Electromyographic biofeedback to improve lower extremity function after stroke: a meta-analysis. Arch. Phys. Med. Rehabil. 79(2), 134–140 (1998)

    Article  Google Scholar 

  23. Oskoei, M.A., Hu, H.: Support vector machine-based classification scheme for myoelectric control applied to upper limb. IEEE Trans. Biomed. Eng. 55(8), 1956–1965 (2008)

    Article  Google Scholar 

  24. Sartori, M., Reggiani, M., Pagello, E., Lloyd, D.G.: Modeling the human knee for assistive technologies. IEEE Trans. Biomed. Eng. 59(9), 2642–2649 (2012)

    Article  Google Scholar 

  25. Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley, Hoboken (2009)

    Book  Google Scholar 

  26. Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1988)

    Google Scholar 

Download references

Acknowledgments

This work has been partially funded from the EU Horizon2020 project n. 644839 CENTAURO and the EU FP7 project n. 601165 WEARHAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Buongiorno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Buongiorno, D., Barone, F., Solazzi, M., Bevilacqua, V., Frisoli, A. (2016). A Linear Optimization Procedure for an EMG-driven NeuroMusculoSkeletal Model Parameters Adjusting: Validation Through a Myoelectric Exoskeleton Control. In: Bello, F., Kajimoto, H., Visell, Y. (eds) Haptics: Perception, Devices, Control, and Applications. EuroHaptics 2016. Lecture Notes in Computer Science(), vol 9775. Springer, Cham. https://doi.org/10.1007/978-3-319-42324-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42324-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42323-4

  • Online ISBN: 978-3-319-42324-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics