Skip to main content

Towards a Synthetic Tutor Assistant: The EASEL Project and its Architecture

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2016)

Abstract

Robots are gradually but steadily being introduced in our daily lives. A paramount application is that of education, where robots can assume the role of a tutor, a peer or simply a tool to help learners in a specific knowledge domain. Such endeavor posits specific challenges: affective social behavior, proper modelling of the learner’s progress, discrimination of the learner’s utterances, expressions and mental states, which, in turn, require an integrated architecture combining perception, cognition and action. In this paper we present an attempt to improve the current state of robots in the educational domain by introducing the EASEL EU project. Specifically, we introduce the EASEL’s unified robot architecture, an innovative Synthetic Tutor Assistant (STA) whose goal is to interactively guide learners in a science-based learning paradigm, allowing us to achieve such rich multimodal interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han, J.-H., Jo, M.-H., Jones, V., Jo, J.-H.: Comparative study on the educational use of home robots for children. J. Inf. Process. Syst. 4(4), 159–168 (2008)

    Article  Google Scholar 

  2. Beer, R.D., Chiel, H.J., Drushel, R.F.: Using autonomous robotics to teach science and engineering. Commun. ACM 42(6), 85–92 (1999)

    Article  Google Scholar 

  3. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.-C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems, Competitions, vol. 1, pp. 59–65. Instituto Politécnico de Castelo Branco (2009)

    Google Scholar 

  4. Wijnen, F., Charisi, V., Davison, D., van der Meij, J., Reidsma, D., Evers, V.: Inquiry learning with a social robot: can you explain that to me? In: Heerink, M., de Jong, M. (eds.) Proceedings of New Friends 2015: The 1st international conference on social robotics in therapy and education, pp. 24–25, Windesheim Flevoland, Almere (2015)

    Google Scholar 

  5. Kanda, T., Hirano, T., Eaton, D., Ishiguro, H.: Interactive robots as social partners and peer tutors for children: a field trial. Hum.-Comput. Interact. 19(1), 61–84 (2004)

    Article  Google Scholar 

  6. Saerbeck, M., Schut, T., Bartneck, C., Janse, M.D.: Expressive robots in education: varying the degree of social supportive behavior of a robotic tutor. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1613–1622. ACM (2010)

    Google Scholar 

  7. Shin, N., Kim, S.: Learning about, from, with robots: students’ perspectives. In: The 16th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2007, pp. 1040–1045. IEEE (2007)

    Google Scholar 

  8. Vouloutsi, V., Munoz, M.B., Grechuta, K., Lallee, S., Duff, A., Llobet, J.-Y.P., Verschure, P.F.M.J.: A new biomimetic approach towards educational robotics: the distributed adaptive control of a synthetic tutor assistant. New Frontiers in Human-Robot Interaction, p. 22 (2015)

    Google Scholar 

  9. Blancas, M., Vouloutsi, V., Grechuta, K., Verschure, P.F.M.J.: Effects of the robot’s role on human-robot interaction in an educational scenario. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) Living Machines 2015. LNCS, vol. 9222, pp. 391–402. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  10. Balch, T., et al.: Designing personal robots for education: hardware, software and curriculum. IEEE Pervasive Comput. 7(2), 5–9 (2008)

    Article  Google Scholar 

  11. Highfield, K., Mulligan, J., Hedberg, J.: Early mathematics learning through exploration with programmable toys. In: Proceedings of the Joint Meeting of PME 32 and PME-NA, pp. 169–176. Citeseer (2008)

    Google Scholar 

  12. Mubin, O., Stevens, C.J., Shahid, S., Al Mahmud, A., Dong, J.-J.: A review of the applicability of robots in education. J. Technol. Educ. Learn. 1, 209–215 (2013)

    Google Scholar 

  13. Piaget, J., Inhelder, B.: The Psychology of the Child. Basic Books, New York (1972)

    Google Scholar 

  14. Papert, S., Harel, I.: Situating constructionism. Constructionism 36, 1–11 (1991)

    Google Scholar 

  15. Vygotsky, L.S.: Mind in Society: The Development of Higher Psychological Processes. Harvard University Press, Cambridge (1980)

    Google Scholar 

  16. Charisi, V., Davison, D., Wijnen, F., Van Der Meij, J., Reidsma, D., Prescott, T., Van Joolingen, W., Evers, V.: Towards a child-robot symbiotic co-development: a theoretical approach. In: AISB Convention 2015, The Society for the Study of Artificial Intelligence and the Simulation of Behaviour (AISB) (2015)

    Google Scholar 

  17. Verschure, P.F.M.J.: Distributed adaptive control: a theory of the mind, brain, body nexus. Biologically Inspired Cogn. Architectures 1, 55–72 (2012)

    Article  Google Scholar 

  18. Verschure, P.F.M.J., Voegtlin, T., Douglas, R.J.: Environmentally mediated synergy between perception and behaviour in mobile robots. Nature 425, 620–624 (2003)

    Article  Google Scholar 

  19. Verschure, P.F.M.J., Pennartz, C.M., Pezzulo, G.: The why, what, where, when and how of goal-directed choice: neuronal and computational principles. Phil. Trans. R. Soc. B 369(1655), 20130483 (2014)

    Article  Google Scholar 

  20. Maffei, G., Santos-Pata, D., Marcos, E., Sánchez-Fibla, M., Verschure, P.F.M.J.: An embodied biologically constrained model of foraging: from classical and operant conditioning to adaptive real-world behavior in DAC-X. Neural Netw. 72, 88–108 (2015)

    Article  Google Scholar 

  21. Kruger, J., Dunning, D.: Unskilled and unaware of it: how difficulties in recognizing one’s own incompetence lead to inflated self-assessments. J. Pers. Soc. Psychol. 77(6), 1121 (1999)

    Article  Google Scholar 

  22. Abramson, L.Y., Seligman, M.E., Teasdale, J.D.: Learned helplessness in humans: critique and reformulation. J. Abnorm. Psychol. 87(1), 49 (1978)

    Article  Google Scholar 

  23. Seligman, M.E.: Learned helplessness. Annu. Rev. Med. 23(1), 407–412 (1972)

    Article  Google Scholar 

  24. Inhelder, B., Piaget, J.: The Growth of Logical Thinking from Childhood to Adolescence: An Essay on the Construction of Formal Operational Structures. Basic Books, New York (1958)

    Book  Google Scholar 

  25. Siegler, R.S.: Three aspects of cognitive development. Cogn. Psychol. 8(4), 481–520 (1976)

    Article  Google Scholar 

  26. Siegler, R.S., Strauss, S., Levin, I.: Developmental sequences within and between concepts. Monogr. Soc. Res. Child Dev. 46, 631–683 (1981)

    Article  Google Scholar 

  27. Metta, G., Fitzpatrick, P., Natale, L.: Yarp: yet another robot platform. Int. J. Adv. Rob. Syst. 3(1), 43–48 (2006)

    Google Scholar 

  28. Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., et al.: The kaldi speech recognition toolkit. In: IEEE 2011 workshop on automatic speech recognition and understanding, no. EPFL-CONF-192584. IEEE Signal Processing Society (2011)

    Google Scholar 

  29. Zaraki, A., Mazzei, D., Giuliani, M., De Rossi, D.: Designing and evaluating a social gaze-control system for a humanoid robot. IEEE Trans. Hum.-Mach. Syst. 44(2), 157–168 (2014)

    Article  Google Scholar 

  30. Zaraki, A., Mazzei, D., Lazzeri, N., Pieroni, M., De Rossi, D.: Preliminary implementation of context-aware attention system for humanoid robots. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 457–459. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  31. Reidsma, D., van Welbergen, H.: AsapRealizer in practice - a modular and extensible architecture for a bml realizer. Entertainment Comput. 4(3), 157–169 (2013)

    Article  Google Scholar 

  32. van Welbergen, H., Yaghoubzadeh, R., Kopp, S.: AsapRealizer 2.0: the next steps in fluent behavior realization for ECAs. In: Bickmore, T., Marsella, S., Sidner, C. (eds.) IVA 2014. LNCS, vol. 8637, pp. 449–462. Springer, Heidelberg (2014)

    Google Scholar 

  33. Vouloutsi, V., Lallée, S., Verschure, P.F.M.J.: Modulating behaviors using allostatic control. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 287–298. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  34. Lallée, S., Vouloutsi, V., Wierenga, S., Pattacini, U., Verschure, P.F.M.J: Efaa: a companion emerges from integrating a layered cognitive architecture. In: Proceedings of the 2014 ACM/IEEE International Conference on Human-Robot Interaction, pp. 105–105. ACM (2014)

    Google Scholar 

  35. ter Maat, M., Heylen, D.: Flipper: an information state component for spoken dialogue systems. In: Vilhjálmsson, H.H., Kopp, S., Marsella, S., Thórisson, K.R. (eds.) IVA 2011. LNCS, vol. 6895, pp. 470–472. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  36. Lazzeri, N., Mazzei, D., Zaraki, A., De Rossi, D.: Towards a believable social robot. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 393–395. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the European Research Council under the European Union’s 7th Framework Programme FP7/2007-2013/ERC grant agreement n. 611971 (EASEL) and n. 341196 (CDAC) to Paul F. M. J. Verschure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasiliki Vouloutsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Vouloutsi, V. et al. (2016). Towards a Synthetic Tutor Assistant: The EASEL Project and its Architecture. In: Lepora, N., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T. (eds) Biomimetic and Biohybrid Systems. Living Machines 2016. Lecture Notes in Computer Science(), vol 9793. Springer, Cham. https://doi.org/10.1007/978-3-319-42417-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42417-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42416-3

  • Online ISBN: 978-3-319-42417-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics