Skip to main content

Multimode Interference Fiber Sensors for the Monitoring of Gasoline/Ethanol Blends

  • Chapter
  • First Online:
Fiber Optic Sensors

Abstract

Multimode interference (MMI) devices have attracted a great deal of interest due to their simplicity of fabrication. The MMI device is ready for testing after splicing a section of multimode fiber (MMF) between two single-mode fiber (SMF). In this chapter we provide an overview of the fundamentals behind the formation of self-images in MMI fiber devices, as well as the basic mechanisms for tuning their operational wavelength which is related with their application for sensing applications. The sensitivity enhancement of these MMI fiber sensors is also investigated by reducing the diameter of the MMF via wet chemical etching, as well as coating the MMF with a high refractive index overlay. The MMI fiber sensors are applied to the quality control of gasolines and in particular the real time monitoring of gasohol, mixtures of gasoline and ethanol, which is critical for the proper operation of flexible-fuel vehicles (FFV). The results demonstrate that MMI fiber sensors are well suited for such applications, as well as other applications were the binary mixture of liquids has to be controlled or monitored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Yin, P.B. Ruffin, F.T. Yu, Fiber Optic Sensors (Taylor & Francis Group, London, 2008)

    Google Scholar 

  2. I.R. Matias, F.J. Arregui, R.O. Claus, Optical fiber sensors. Encycl. Sens. X, 1–19 (2006)

    Google Scholar 

  3. W. Liang, Y. Huang, Y. Xu, R.K. Lee, A. Yariv, Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett. 86(15), 151122 (2005)

    Article  Google Scholar 

  4. S.M. Tripathi, W.J. Bock, A. Kumar, P. Mikulic, Temperature insensitive high-precision refractive-index sensor using two concatenated dual-resonance long-period gratings. Opt. Lett. 38(10), 1666–1668 (2013)

    Article  Google Scholar 

  5. T. Wei, Y. Han, Y. Li, H.L. Tsai, H. Xiao, Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Opt. Express 16(8), 5764–5769 (2008)

    Article  Google Scholar 

  6. Z.L. Ran, Y.J. Rao, W.J. Liu, X. Liao, K.S. Chiang, Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index. Opt. Express 16(3), 2252–2263 (2008)

    Article  Google Scholar 

  7. Y.J. Rao, M. Deng, D.W. Duan, T. Zhu, In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber. Sens. Actuators A 148(1), 33–38 (2008)

    Article  Google Scholar 

  8. G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G.A. Cardenas-Sevilla, J. Villatoro, Optical microfiber mode interferometer for temperature-independent refractometric sensing. Opt. Lett. 37(11), 1974–1976 (2012)

    Article  Google Scholar 

  9. H. Luo, Q. Sun, Z. Xu, D. Liu, L. Zhang, Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer. Opt. Lett. 39(13), 4049–4052 (2014)

    Article  Google Scholar 

  10. G. Brambilla, F. Xu, Demonstration of a refractometric sensor based on optical microfiber coil resonator, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), p. CMJJ5

    Google Scholar 

  11. F. Xu, V. Pruneri, V. Finazzi, G. Brambilla, An embedded optical nanowire loop resonator refractometric sensor. Opt. Express 16(2), 1062–1067 (2008)

    Article  Google Scholar 

  12. W.S. Mohammed, P.W. Smith, X. Gu, All-fiber multimode interference bandpass filter. Opt. Lett. 31(17), 2547–2549 (2006)

    Article  Google Scholar 

  13. J.E. Antonio-Lopez, P. LiKamWa, J.J. Sanchez-Mondragon, D.A. May-Arrioja, All-fiber multimode interference micro-displacement sensor. Meas. Sci. Technol. 24(5), 055104 (2013)

    Article  Google Scholar 

  14. A. Castillo-Guzman, J.E. Antonio-Lopez, R. Selvas-Aguilar, D.A. May-Arrioja, J. Estudillo-Ayala, P. LiKamWa, Widely tunable erbium-doped fiber laser based on multimode interference effect. Opt. Express 18(2), 591–597 (2010)

    Article  Google Scholar 

  15. J.E. Antonio-Lopez, A. Castillo-Guzman, D.A. May-Arrioja, R. Selvas-Aguilar, P. LiKamWa, Tunable multimode-interference bandpass fiber filter. Opt. Lett. 35(3), 324–326 (2010)

    Article  Google Scholar 

  16. J.E. Antonio-Lopez, D.A. May-Arrioja, P. LiKamWa, Optofluidic tuning of multimode interference fiber filters, in Proceedings of SPIE vol. 7339 (2009), p. 73390D

    Google Scholar 

  17. Y. Chen, Q. Han, T. Liu, X. Lan, H. Xiao, Optical fiber magnetic field sensor based on single-mode–multimode–single-mode structure and magnetic fluid. Opt. Lett. 38(20), 3999–4001 (2013)

    Article  Google Scholar 

  18. J.G. Aguilar-Soto, M.A. Basurto-Pensado, P. Zhang, H.J. Cho, P. LiKamWa, D.A. May-Arrioja, Integrated fiber based multimode interference bio/chemical sensor, in Frontiers in Optics (Optical Society of America, 2009), p. FTuE1

    Google Scholar 

  19. E. Sani, A. Dell’Oro, Optical constants of ethylene glycol over an extremely wide spectral range. Opt. Mater. 37, 36–41 (2014)

    Article  Google Scholar 

  20. C.R. Biazoli, S. Silva, M.A. Franco, O. Frazão, C.M. Cordeiro, Multimode interference tapered fiber refractive index sensors. Appl. Opt. 51(24), 5941–5945 (2012)

    Article  Google Scholar 

  21. A.J. Rodríguez Rodríguez, D.G. Martínez Camacho, K. González Gutiérrez, D.A. May-Arrioja, R.F. Domínguez Cruz, I.R. Matías Maestro, C. Ruiz Zamarreño, Rum adulteration detection using an optical fiber sensor based on multimodal interference (MMI). Opt. Pura Appl. 46(4), 345–352 (2013)

    Article  Google Scholar 

  22. A.J. Rodríguez Rodríguez, O. Baldovino-Pantaleón, R.F.D. Cruz, C.R. Zamarreño, I.R. Matías Maestro, D.A. May-Arrioja, Gasohol quality control for real time applications by means of a multimode interference fiber sensor. Sensors 14, 17817–17828 (2014)

    Google Scholar 

  23. A.B. Socorro, I. del Villar, J.M. Corres, F.J. Arregui, I.R. Matias, Mode transition in complex refractive index coated single-mode-multimode-single-mode-structure. Opt. Express, 21(10) (2013)

    Google Scholar 

  24. H. Fukano, Y. Kushida, S. Taue, Multimode-interference-structure optical-fiber temperature sensor with high sensitivity. IEICE Electr. Express 10(24) (2013)

    Google Scholar 

  25. H. Chen, Z. Gu, K. Gao, Humidity sensor based on cascaded chirped long-period fiber gratings coated with TiO2/SnO2 composite films. Sens. Actuators B: Chem. 196, 18–22 (2014)

    Article  Google Scholar 

  26. C. Elosúa, I. Vidondo, F.J. Arregui, C. Bariain, A. Luquin, M. Laguna, I.R. Matías, Lossy mode resonance optical fiber sensor to detect organic vapors. Sens. Actuators B: Chem. 187, 65–71 (2013)

    Article  Google Scholar 

  27. C.R. Zamarreño, M. Hernáez, I. Del Villar, I.R. Matías, F.J. Arregui, Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings. Sens. Actuators B Chem. 155(1), 290–297 (2011)

    Article  Google Scholar 

  28. P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, A. Cusano, Optical chemosensor based on long period fiber gratings coated with d form syndiotactic polystyrene. IEEE Photon. Technol. Lett. 17(8), 1713–1715 (2005)

    Article  Google Scholar 

  29. D.W. Kim, Y. Zhang, K.L. Cooper, A. Wang, Fibre-optic interferometric immuno-sensor using long period grating. Electron. Lett. 42(6), 324–325 (2006)

    Article  Google Scholar 

  30. S.K. Khijwania, K.L. Srinivasan, J.P. Singh, An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity. Sens. Actuators B: Chem. 104(2), 217–222 (2005)

    Article  Google Scholar 

  31. N. Paliwal, J. John, Lossy mode resonance (LMR) based fiber optic sensors: a review. Sens. J. IEEE 15(10), 5361–5371 (2015)

    Article  Google Scholar 

  32. S.K. Chauhan, N. Punjabi, D.K. Sharma, S. Mukherji, A silicon nitride coated LSPR based fiber-optic probe for possible continuous monitoring of sucrose content in fruit juices. Sens. Actuators B: Chem. 222, 1240–1250 (2016)

    Article  Google Scholar 

  33. S. López, C.R. Zamarreño, M. Hernaez, I. Del Villar, I.R. Matias, F.J. Arregui, Optical Fiber Refractometers with Response in the Visible Spectral Region by means of ITO Coatings. 7a Reunión Española de Optoelectrónica, OPTOEL’11

    Google Scholar 

  34. United States Environmental Protection Agency, Aftermarket Retrofit Device Evaluation Program, Office of Mobile Sources - EPA 420 - B - 00 - 003 (2000)

    Google Scholar 

  35. W. Wigglesworth, MTBE—where do we go from here? Hydrocarbon processing (2000)

    Google Scholar 

  36. Frequently Asked Questions about Methanol, http://www.methanex.com/products/faqs.html. Accessed 25 May 2014

  37. R. Falate, M. Müller, J.L. Fabris, H.J. Kalinowski, Long period gratings in standard telecommunication optical fibers for fuel quality control. Ann. Opt. 5, 1–4 (2003)

    Google Scholar 

  38. V.V. Spirin, M.G. Shlyagin, S.V. Miridonov, F.M. Jiménez, R.L. Gutierrez, Fiber Bragg grating sensor for petroleum hydrocarbon leak detection. Opt. Lasers Eng. 32(5), 497–503 (1999)

    Article  Google Scholar 

  39. R.M. López, V.V. Spirin, S.V. Miridonov, M.G. Shlyagin, G. Beltrán, E.A. Kuzin, Sensor de fibra óptica distribuido para la localización de fugas de hidrocarburo basado en mediciones de transmisión/reflexión. Revista mexicana de física 48(5), 457–462 (2002)

    Google Scholar 

  40. A. MacLean, C. Moran, W. Johnstone, B. Culshaw, D. Marsh, P. Parker, Detection of hydrocarbon fuel spills using a distributed fibre optic sensor. Sens. Actuators A 109(1), 60–67 (2003)

    Article  Google Scholar 

  41. A. Treviño Santoyo, M.G. Shlyagin, J. Mendieta, V.V. Spirin, L. Niño de Rivera, Variación del espectro de transmitancia de una fibra óptica con recubrimiento de polímero por influencia de hidrocarburos y cambios de temperatura. Revista mexicana de física 51(6), 600–604 (2005)

    Google Scholar 

  42. W. Dabelstein, A. Reglitzky, A. Schütze, K. Reders, Automotive fuels, in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, 2007). doi:10.1002/14356007.a16_719.pub2

  43. The Royal Society Celebrating 350 years, “Sustainable biofuels: prospects and challenges”, Policy document 01/08 (2008), https://royalsociety.org/~/media/Royal_Society_Content/policy/publications/2008/7980.pdf. ISBN 978 0 85403 662 2

  44. Russian Biofuels Association, “What is bioethanol”, http://www.biofuels.ru/bioethanol/What_bioethanol/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Rodriguez-Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodriguez-Rodriguez, A.J., May-Arrioja, D.A., Hernandez-Romano, I., Matías, I.R. (2017). Multimode Interference Fiber Sensors for the Monitoring of Gasoline/Ethanol Blends. In: Matias, I., Ikezawa, S., Corres, J. (eds) Fiber Optic Sensors. Smart Sensors, Measurement and Instrumentation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-42625-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42625-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42624-2

  • Online ISBN: 978-3-319-42625-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics