Skip to main content

Coordinated Multi-point (CoMP) Systems

  • Chapter
  • First Online:
Fiber-Wireless Convergence in Next-Generation Communication Networks

Part of the book series: Optical Networks ((OPNW))

  • 1364 Accesses

Abstract

This chapter first gives a brief introduction on the coordinated multi-point (CoMP) technologies and the backhaul requirements for enabling CoMP techniques in LTE-A. As fiber–wireless integration (also known as radio-over-fiber (RoF)) is introduced to next-generation mobile backhaul networks as a promising technology to meet the critical backhaul requirements, in this chapter, the CoMP backhaul architectures and BS/RAU configurations based on various RoF technologies are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. GPP TS 36.300, V8.9.0 (2009) Evolved universal terrestrial radio access (EUTRA) and Evolved universal terrestrial radio access network (EUTRAN): overall description

    Google Scholar 

  2. Akyildiz IF et al (2010) The evolution to 4G cellular systems: LTE-advanced. Phys Commun 3:217–244

    Article  Google Scholar 

  3. Irmer R et al (2011) Coordinated multipoint: concepts performance and field trial results. IEEE Commun Mag 49(2):102–111

    Article  Google Scholar 

  4. Lee D et al (2012) Coordinated multipoint transmission and reception in LTE-advanced: deployment scenarios and operational challenges. IEEE Commun Mag 50(2):148–155

    Article  Google Scholar 

  5. Jungnickel V et al (2013) Backhaul requirements for inter-site cooperation in heterogeneous LTE-advanced networks. In: IEEE international conference on communications (ICC)

    Google Scholar 

  6. Sawahashic M et al (2010) Coordinated multipoint transmission/reception techniques for LTE-advanced [Coordinated and Distributed MIMO]. IEEE Wireless Commun 17(3)

    Google Scholar 

  7. (2008) Next generation mobile networks optimised backhaul requirements. NGMN Alliance

    Google Scholar 

  8. Brück S et al (2013) Backhaul requirements for centralized and distributed cooperation techniques

    Google Scholar 

  9. Kazovsky L et al (2012) Hybrid optical-wireless access networks. Proc IEEE 100(5)

    Google Scholar 

  10. Diehm F et al (2010) The FUTON prototype: proof of concept for coordinated multi-point in conjunction with a novel integrated wireless/optical architecture. In: IEEE wireless communications and networking conference (WCNC)

    Google Scholar 

  11. Shaw W-T et al (2009) An ultra-scalable broadband architecture for municipal hybrid wireless access using optical grid network. In: Conference on optical fiber communication (OFC)

    Google Scholar 

  12. Wake D et al (2009) A comparison of remote radio head optical transmission technologies for next generation wireless systems. In: LEOS annual meeting

    Google Scholar 

  13. Mola DD et al (2011) Photonic integrated technologies for optical backhauling. In: International conference on transparent optical networks (ICTON)

    Google Scholar 

  14. Lim C et al (2010) Fiber-wireless networks and subsystem technologies. IEEE/OSA J Lightwave Technol (JLT) 28(4):390–405

    Article  Google Scholar 

  15. Wake D et al (2010) Radio over fiber link design for next generation wireless systems. IEEE/OSA J Lightwave Technol (JLT) 28(16):2456–2464

    Article  Google Scholar 

  16. CPRI specification v4.0 at www.cpri.info

  17. OBSAI specification v2.0 at www.obsai.com

  18. Santiago C et al (2009) Next generation radio over fiber network management for a distributed antenna system. In: International conference on wireless communication, vehicular technology, information theory and aerospace and electronics systems technology

    Google Scholar 

  19. Lometti A et al (2012) Network architectures for CPRI backhauling. In: International conference on transparent optical networks (ICTON)

    Google Scholar 

  20. Li H et al (2011) Efficient HetNet implementation using broadband wireless access with fiber-connected massively distributed antennas architecture. IEEE Wireless Commun 18(3)

    Google Scholar 

  21. Xu X (2011) Imperfect digital-fiber-optic-link-based cooperative distributed antennas with fractional frequency reuse in multicell multiuser networks. IEEE Trans Veh Technol 60(9)

    Google Scholar 

  22. Yang Y et al (2011) Experimental demonstration of multi-channel hybrid fiber-radio system using digitized RF-over-fiber technique. IEEE/OSA J Lightwave Technol (JLT) 29(99):2130–2137

    Google Scholar 

  23. Chowdhury et al (2009) Advanced system technologies and field demonstration for in-building optical-wireless network with integrated broadband services. IEEE/OSA J Lightwave Technol (JLT) 27(12):1920–1927

    Article  Google Scholar 

  24. Vaughan RG et al (1991) The theory of bandpass sampling. IEEE Trans Signal Process 39(9):1973–1984

    Article  Google Scholar 

  25. Yang Y et al (2012) A full-duplex digitized RoF system for millimeter-wave OFDM transmission. In: ECOC

    Google Scholar 

  26. Lim et al (2007) Intermodulation distortion improvement for fiber radio applications incorprating OSSB + C modulation in an optical integrated-access environment. IEEE/OSA J Lightwave Technol (JLT) 27(6)

    Google Scholar 

  27. Yariv et al (1984) Intermodulation distortion in a directly modulated semiconductor injection laser. Appl Phys Lett 1034–1036

    Google Scholar 

  28. Mestdagh JG (1993) Effect of amplitude clipping in DMT-ADSL transceivers. Electron Lett 29(15)

    Google Scholar 

  29. Sun Y (2004) Effects of noise and jitter on algorithms for bandpass sampling in radio receivers. ISCAS 1:761–764

    Google Scholar 

  30. Diniz PSR (2010) Digital signal processing: system analysis and design. Cambridge University Press

    Google Scholar 

  31. Yang Y, Lim C, Nirmalathas A (2011) Comparison of energy consumption of integrated optical-wireless access networks. In: OFC

    Google Scholar 

  32. Tse D et al (2005) Fundamentals of wireless communications. Cambridge University Press

    Google Scholar 

  33. Cheng L, Zhu M, Gul MMU, Ma X, Chang G-K (2014) Adaptive photonics-aided coordinated multipoint transmissions for next-generation mobile fronthaul. IEEE/OSA J Lightwave Technol 32(10):1907–1914

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhuo Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, Y., Lim, C., Nirmalathas, A. (2017). Coordinated Multi-point (CoMP) Systems. In: Tornatore, M., Chang, GK., Ellinas, G. (eds) Fiber-Wireless Convergence in Next-Generation Communication Networks. Optical Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-42822-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42822-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42820-8

  • Online ISBN: 978-3-319-42822-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics