Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

Satellite-based augmentation systems (GlossaryTerm

SBAS

s) are designed to enhance the performance of standard global navigation satellite system (GlossaryTerm

GNSS

) positioning. SBASs improve the positioning accuracy by providing corrections for the largest error sources. More importantly, SBASs provide assured confidence bounds on these corrections that allows users to place integrity limits on their position errors. Several systems have been implemented around the world and several more are in development. They have been put into place by civil aviation authorities for the express purpose of enhancing air navigation services. However, SBAS services have been widely adopted by other user communities, as the signals are free of charge and easily integrated into GNSS receivers.

This chapter describes the basic architecture, functions, and application of SBAS. Because the key motivation behind SBAS is integrity, it is essential first to understand the error sources that affect GNSS and how they may vary with time or location. It is then explained how the corrections and confidence intervals are determined and applied by the user. The different SBASs that have been developed around the world are described and how they are developed to the same international standards such that each is interoperable with the others. The performances and services of each system are described. Finally, the evolution of SBAS from its current single-frequency single-constellation form into systems that support multiple-frequencies and multiple-constellations is described.

The goal of this chapter is to explain the motivation for developing SBASs and provide the reader with a working knowledge of how they function and how they may be used to enhance GNSS positioning accuracy and integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABAS:

aircraft based augmentation system

CONUS:

conterminous United States

CRC:

cyclic redundancy check

DME:

distance measuring equipment

ECEF:

Earth-centered Earth-fixed

EGNOS:

European Geostationary Navigation Overlay Service

FAA:

US Federal Aviation Administration

GAGAN:

GPS-aided GEO Augmented Navigation

GBAS:

ground-based augmentation system

GEO:

geostationary Earth orbit

GIVE:

grid ionospheric vertical error

GLONASS:

Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)

GNSS:

global navigation satellite system

GPS:

Global Positioning System

ICAO:

International Civil Aviation Organization

IGP:

ionospheric grid point

ILS:

instrument landing system

IPP:

ionospheric pierce point

KASS:

Korean Augmentation Satellite System

MCS:

master control station

MLS:

microwave landing system

MSAS:

Multi-Function Satellite Augmentation System

PRN:

pseudo-random noise

RAIM:

receiver autonomous integrity monitoring

SBAS:

satellite-based augmentation system

SDCM:

System for Differential Corrections and Monitoring

TACAN:

tactical air navigation (system)

TTA:

time-to-alert

UDRE:

user differential range error

UTC:

Coordinated Universal Time

VHF:

very high frequency

VOR:

VHF omnidirectional range

VPL:

vertical protection level

WAAS:

Wide Area Augmentation System

References

  1. International Standards and Recommended Practices (SARPS), Annex 10 – Aeronautical Telecommunications (ICAO, Radio Navigation Aids 2006)

    Google Scholar 

  2. D. Lawrence, D. Bunce, N.G. Mathur, C.E. Sigler: Wide Area Augmentation System (WAAS) – Program status, ION GNSS 2007, Fort Worth (ION, Virginia 2007) pp. 892–899

    Google Scholar 

  3. Archive List of WAAS and SPS PAN Reports (Federal Aviation Administration, 2001–2016) www.nstb.tc.faa.gov/DisplayArchive.htm

  4. E. Gakstatter: Using high-performance L1 GPS receivers w/WAAS for mapping/surveying, Proc. Stanf. Cent. PNT Symp. (2011)

    Google Scholar 

  5. K. Ali, M. Pini, F. Dovis: Measured performance of the application of EGNOS in the road traffic sector, GPS Solutions 16(2), 135–145 (2012)

    Article  Google Scholar 

  6. H. Cabler, B. DeCleene: LPV: New, improved WAAS instrument approach, ION GPS 2002, Portland (ION, Virginia 2002) pp. 1013–1021

    Google Scholar 

  7. R.G. Brown: A baseline RAIM scheme and a note on the equivalence of three RAIM methods, Navigation 39(3), 301–316 (1992)

    Article  Google Scholar 

  8. Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipment (RTCA, Washington DC 2013)

    Google Scholar 

  9. J.A. Klobuchar: Ionospheric effects on GPS. In: Global Positioning System: Theory and Applications, Vol. 1, ed. by B.W. Parkinson, J.J. Spilker (AIAA, Washington DC 1996), pp. 485–515, Chap. 12

    Google Scholar 

  10. L. Sparks, X. Pi, A.J. Mannucci, T. Walter, J. Blanch, A. Hansen, P. Enge, E. Altshuler, R. Fries: The WAAS ionospheric threat model, Proc. Beac. Satell. Symp., Boston (2001)

    Google Scholar 

  11. A. Komjathy, L. Sparks, A.J. Mannucci, A. Coster: The ionospheric impact of the October 2003 storm event on wide area augmentation system, GPS Solutions 9(1), 41–50 (2005)

    Article  Google Scholar 

  12. J.P. Collins, R.B. Langley: The residual tropospheric propagation delay: How bad can it get?, ION GPS 1998, Nashville (ION, Virginia 1998) pp. 729–738

    Google Scholar 

  13. K. Shallberg, P. Shloss, E. Altshuler, L. Tahmazyan: WAAS measurement processing, reducing the effects of multipath, ION GPS 2001, Salt Lake City (ION, Virginia 2001) pp. 2334–2340

    Google Scholar 

  14. R.E. Phelts, T. Walter, P. Enge: Characterizing nominal analog signal deformation on GNSS signals, ION GNSS 2009, Savannah (ION, Virginia 2009) pp. 1343–1350

    Google Scholar 

  15. C. Macabiau, C. Milner, A. Chabory, N. Suard, C. Rodriguez, M. Mabilleau, J. Vuillaume, S. Hegron: Nominal bias analysis for ARAIM user, ION ITM 2015, Dana Point (ION, Virginia 2015) pp. 713–732

    Google Scholar 

  16. K. Shallberg, J. Grabowski: Considerations for characterizing antenna induced range errors, ION GPS 2002, Portland (ION, Virginia 2002) pp. 809–815

    Google Scholar 

  17. S. Rajagopal, T. Walter, S. Datta-Barua, J. Blanch, T. Sakai: Correlation structure of the equatorial ionosphere, ION NTM 2004, San Diego (ION, Virginia 2004) pp. 542–550

    Google Scholar 

  18. T. Walter, A. Hansen, J. Blanch, P. Enge, T. Mannucci, X. Pi, L. Sparks, B. Iijima, B. El-Arini, R. Lejeune, M. Hagen, E. Altshuler, R. Fries, A. Chu: Robust detection of ionospheric irregularities, Navigation 48(2), 89–100 (2001)

    Article  Google Scholar 

  19. J. Blanch: Using Kriging to Bound Satellite Ranging Errors due to the Ionosphere, Ph.D. Thesis (Stanford Univ., Stanford 2003)

    Google Scholar 

  20. L. Sparks, J. Blanch, N. Pandya: Estimating ionospheric delay using kriging: 1. Methodology, Radio Sci. 46(RS0D21), 1–13 (2011)

    Google Scholar 

  21. L. Sparks, J. Blanch, N. Pandya: Estimating ionospheric delay using kriging: 2. Impact on satellite-based augmentation system availability, Radio Sci. 46(RS0D22), 1–12 (2011)

    Google Scholar 

  22. T. Walter, S. Rajagopal, S. Datta-Barua, J. Blanch: Protecting against unsampled ionospheric threats, Proc. Beac. Satell. Symp., Trieste (2004)

    Google Scholar 

  23. T. Walter: WAAS MOPS: Practical examples, ION NTM 1999, San Diego (ION, Virginia 1999) pp. 283–293

    Google Scholar 

  24. M. Grewal, P.-H. Hsu, T.W. Plummer: A new algorithm for WAAS GEO Uplink Subsystem (GUS) clock steering, ION GPS/GNSS 2003, Portland (ION, Virginia 2003) pp. 2712–2719

    Google Scholar 

  25. J. Vázquez, M.A. Sánchez, J. Cegarra, P.D. Tejera, P. Gómez Martínez: The EGNOS NOTAM proposals service: Towards full ICAO compliance, ION GNSS+ 2013, Nashville (ION, Virginia 2013) pp. 301–315

    Google Scholar 

  26. T. Walter, P. Enge, B. DeCleene: Integrity lessons from the WIPP, ION NTM 2003, Anaheim (ION, Virginia 2003) pp. 183–194

    Google Scholar 

  27. B. DeCleene: Defining pseudorange integrity – overbounding, ION GPS 2000, Salt Lake City (ION, Virginia 2000) pp. 1916–1924

    Google Scholar 

  28. J. Rife, S. Pullen, B. Pervan, P. Enge: Paired overbounding and application to GPS augmentation, Proc. PLANS 2004, Monterey (2004) pp. 439–446

    Google Scholar 

  29. T. Walter, J. Blanch, J. Rife: Treatment of biased error distributions in SBAS, J. Glob. Position. Syst. 3(1/2), 265–272 (2004)

    Article  Google Scholar 

  30. P. Enge: AAS messaging system: Data rate, capacity, and forward error correction, Navigation 44(1), 63–76 (1997)

    Article  Google Scholar 

  31. T. Walter, A. Hansen, P. Enge: Message type 28, ION NTM 2001, Long Beach (ION, Virginia 2001) pp. 522–532

    Google Scholar 

  32. L1 C/A PRN Code Assignments (US Air Force, Los Angeles Air Force Base 2016) http://www.losangeles.af.mil/About-Us/Fact-Sheets/Article/734549/gps-prn-assignment

  33. FAA: www.nstb.tc.faa.gov/

  34. A. Heßelbarth, L. Wanninger: SBAS orbit and satellite clock corrections for precise point positioning, GPS Solutions 17(4), 465–473 (2013)

    Article  Google Scholar 

  35. H. Manabe: Status of MSAS: MTSAT satellite-based augmentation system, ION GNSS 2008, Savannah (ION, Virginia 2008) pp. 1032–1059

    Google Scholar 

  36. T. Sakai, H. Tashiro: MSAS status, ION GNSS+ 2013, Nashville (ION, Virginia 2013) pp. 2343–2360

    Google Scholar 

  37. P. Feuillet: EGNOS program status, ION GNSS 2012, Nashville (ION, Virginia 2012) pp. 1017–1033

    Google Scholar 

  38. D. Thomas: EGNOS V2 program update, ION GNSS+ 2013, Nashville (ION, Virginia 2013) pp. 2327–2342

    Google Scholar 

  39. Monthly Performance Reports (European Satellite Services Provider, 2011–2016) https://egnos-user-support.essp-sas.eu/new_egnos_ops/content/monthly-performance-reports

  40. J. Ventura-Traveset, D. Flament (Eds.): EGNOS – The European Geostationary Navigation Overlay System – A Cornerstone of Galileo, ESA SP-1303 (ESA, Noordwijk 2006)

    Google Scholar 

  41. R. Chen, F. Toran-Marti, J. Ventura-Traveset: Access to the EGNOS signal in space over mobile-IP, GPS Solutions 7(1), 16–22 (2003)

    Article  Google Scholar 

  42. GAGAN (Airports Authority of India, 2013) www.aai.aero/public_notices/aaisite_test/faq_gagan.jsp

  43. India: GAGAN Implementation and Certification in India, 49th Conf. Dir. Gen. Civ. Aviat. Asia Pac. Reg. (ICAO, New Delhi 2012), www.icao.int/APAC/Meetings/2012_DGCA/

  44. S. Karutin: SDCM Program Status, ION GNSS 2012, Nashville, TN 17–21 Sep 2012 (ION, Virginia 2012) 1034–1044

    Google Scholar 

  45. W. Song, J. Shen: China – Development of BeiDou Navigation Satellite System (BDS) – A program update, Proc. ION Pacific PNT, Honolulu (ION, Virginia 2015) pp. 208–236

    Google Scholar 

  46. Y. Yun: Influence of reference station distribution on the Korean SBAS performance, Proc. ION Pacific PNT, Honolulu (ION, Virginia 2015) pp. 964–969

    Google Scholar 

  47. S.S. Jan, W. Chan, T. Walter: ATLAB algorithm availability simulation tool, GPS Solutions 13(4), 327–332 (2009)

    Article  Google Scholar 

  48. T. Walter, J. Blanch, R.E. Phelts, P. Enge: Volving WAAS to serve L1/L5 users, Navigation 59(4), 317–327 (2012)

    Article  Google Scholar 

  49. T. Walter, P. Enge: Modernizing WAAS, ION GPS 2004, Long Beach (ION, Virginia 2004) pp. 1683–1690

    Google Scholar 

  50. R.S. Conker, M.B. El Arini, C.J. Hegarty, T. Hsiao: Modeling the effects of ionospheric scintillation on GPS/satellite based augmentation system availability, Radio Sci. 38(1), 1–23 (2003)

    Article  Google Scholar 

  51. C.J. Hegarty, E. Chatre: Evolution of the global navigation satellite system (GNSS), Proc. IEEE 96(12), 1902–1917 (2008)

    Article  Google Scholar 

  52. Z. Yao: BeiDou next generation signal design and expected performance, Int. Tech. Symp. Navig. Timing (ENAC, Toulouse 2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Walter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walter, T. (2017). Satellite Based Augmentation Systems. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_12

Download citation

Publish with us

Policies and ethics