Skip to main content

Massive MIMO in Small Cell Networks: Wireless Backhaul

  • Chapter
  • First Online:
Massive MIMO Meets Small Cell

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

Dense small cell networks are expected to be deployed in the next generation wireless system to provide better coverage and throughput to meet the ever-increasing requirements of high data rate applications. As the trend toward densification calls for more and more wireless links to forward a massive backhaul traffic into the core network, it is critically important to take into account the presence of a wireless backhaul for the energy-efficient design of small cell networks. In this chapter, we develop a general framework to analyze the energy efficiency of a two-tier small cell network with massive MIMO macro base stations and wireless backhaul. Our analysis reveal that under spatial multiplexing, the energy efficiency of a small cell network is sensitive to the network load, and it should be taken into account when controlling the number of users served by each base station. We also demonstrate that a two-tier small cell network with wireless backhaul can be significantly more energy efficient than a one-tier cellular network. However, this requires the bandwidth division between radio access links and wireless backhaul to be optimally designed according to the load conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Many frequency planning possibilities exist for MBSs and SAPs, where the optimal solution is traffic load dependent. Though a non-co-channel allocation is justified for highly dense scenarios [3032], in some cases a co-channel deployment may be preferred from an operator’s perspective, since MBSs and SAPs can share the same spectrum thus improving the spectral utilization ratio [33].

  2. 2.

    We note that different SAPs and MBSs may have different uplink/downlink resource partitions for their associated UEs. Since the aggregate interference is affected by the average value of such partitions, we assume fixed and uniform uplink/downlink partitions.

  3. 3.

    Note that the results involving the machinery of random matrix theory can be adjusted to account for different transmit precoders and receive filters, imperfect channel state information, and antenna correlation [3942].

  4. 4.

    The number of base station antennas imposes a constraint on the maximum number of UEs scheduled for transmission. In fact, under linear precoding, the number of scheduled UEs should not exceed the number of antennas, in order for the achievable rate not to be significantly degraded [4951].

References

  1. G. Auer, V. Giannini, C. Desset, I. Godor, P. Skillermark, M. Olsson, M. Imran, D. Sabella, M. Gonzalez, O. Blume, and A. Fehske, “How much energy is needed to run a wireless network?” IEEE Wireless Commun., vol. 18, no. 5, pp. 40–49, Oct. 2011.

    Google Scholar 

  2. Y. Chen, S. Zhang, S. Xu, and G. Y. Li, “Fundamental trade-offs on green wireless networks,” IEEE Commun. Mag., vol. 49, no. 6, pp. 30–37, Jun. 2011.

    Google Scholar 

  3. G. Y. Li, Z. Xu, C. Xiong, C. Yang, S. Zhang, Y. Chen, and S. Xu, “Energy-efficient wireless communications: Tutorial, survey, and open issues,” IEEE Trans. Wireless Commun., vol. 18, no. 6, pp. 28–35, Dec. 2011.

    Google Scholar 

  4. D. Feng, C. Jiang, G. Lim, L. J. Cimini Jr, G. Feng, and G. Y. Li, “A survey of energy-efficient wireless communications,” IEEE Commun. Surveys and Tutorials, vol. 15, no. 1, pp. 167–178, Feb. 2013.

    Google Scholar 

  5. R. Hu and Y. Qian, “An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems,” IEEE Commun. Mag., vol. 52, no. 5, pp. 94–101, May 2014.

    Google Scholar 

  6. G. Geraci, M. Wildemeersch, and T. Q. S. Quek, “Energy efficiency of distributed signal processing in wireless networks: A cross-layer analysis,” IEEE Trans. Signal Process., vol. 64, no. 4, pp. 1034–1047, Feb. 2016.

    Google Scholar 

  7. H. H. Yang, J. Lee, and T. Q. S. Quek, “Heterogeneous cellular network with energy harvesting-based D2D communication,” IEEE Trans. Wireless Commun., vol. 15, no. 2, pp. 1406–1419, Feb. 2016.

    Google Scholar 

  8. T. Q. S. Quek, G. de la Roche, I. Güvenç, and M. Kountouris, Small cell networks: Deployment, PHY techniques, and resource management. Cambridge University Press, 2013.

    Google Scholar 

  9. J. G. Andrews, H. Claussen, M. Dohler, S. Rangan, and M. C. Reed, “Femtocells: Past, present, and future,” IEEE J. Sel. Areas Commun., vol. 30, no. 3, pp. 497–508, Apr. 2012.

    Google Scholar 

  10. J. Hoydis, M. Kobayashi, and M. Debbah, “Green small-cell networks,” IEEE Vehicular Technology Mag., vol. 6, no. 1, pp. 37–43, Mar. 2011.

    Google Scholar 

  11. Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. G. Andrews, “User association for load balancing in heterogeneous cellular networks,” IEEE Trans. Wireless Commun., vol. 12, no. 6, pp. 2706–2716, Jun. 2013.

    Google Scholar 

  12. H. S. Dhillon, M. Kountouris, and J. G. Andrews, “Downlink MIMO hetnets: Modeling, ordering results and performance analysis,” IEEE Trans. Wireless Commun., vol. 12, no. 10, pp. 5208–5222, Oct. 2013.

    Google Scholar 

  13. Small Cell Forum, “Backhaul technologies for small cells,” white paper, document 049.05.02, Feb. 2014.

    Google Scholar 

  14. H. S. Dhillon and G. Caire, “Information theoretic upper bound on the capacity of wireless backhaul networks,” in Proc. IEEE Int. Symp. on Inform. Theory, Honolulu, HI, Jun. 2014, pp. 251–255.

    Google Scholar 

  15. H. S. Dhillon and G. Caire, “Scalability of line-of-sight massive MIMO mesh networks for wireless backhaul,” in Proc. IEEE Int. Symp. on Inform. Theory, Honolulu, HI, Jun. 2014, pp. 2709–2713.

    Google Scholar 

  16. L. Sanguinetti, A. L. Moustakas, and M. Debbah, “Interference management in 5G reverse TDD HetNets: A large system analysis,” IEEE J. Sel. Areas Commun., vol. 33, no. 6, pp. 1–1, Mar. 2015.

    Google Scholar 

  17. J. Andrews, “Seven ways that HetNets are a cellular paradigm shift,” IEEE Commun. Mag., vol. 51, no. 3, pp. 136–144, Mar. 2013.

    Google Scholar 

  18. H. Claussen, “Future cellular networks,” Alcatel-Lucent, Apr. 2012.

    Google Scholar 

  19. A. J. Fehske, F. Richter, and G. P. Fettweis, “Energy efficiency improvements through micro sites in cellular mobile radio networks,” in Proc. IEEE Global Telecomm. Conf. Workshops, Honolulu, HI, Dec. 2009, pp. 1–5.

    Google Scholar 

  20. C. Li, J. Zhang, and K. Letaief, “Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations,” IEEE Trans. Wireless Commun., vol. 13, no. 5, pp. 2505–2517, May 2014.

    Google Scholar 

  21. M. Wildemeersch, T. Q. S. Quek, C. H. Slump, and A. Rabbachin, “Cognitive small cell networks: Energy efficiency and trade-offs,” IEEE Trans. Commun., vol. 61, no. 9, pp. 4016–4029, Sep. 2013.

    Google Scholar 

  22. Y. S. Soh, T. Q. S. Quek, M. Kountouris, and H. Shin, “Energy efficient heterogeneous cellular networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 5, pp. 840–850, Apr. 2013.

    Google Scholar 

  23. S. Navaratnarajah, A. Saeed, M. Dianati, and M. A. Imran, “Energy efficiency in heterogeneous wireless access networks,” IEEE Wireless Commun., vol. 20, no. 5, pp. 37–43, Oct. 2013.

    Google Scholar 

  24. E. Björnson, M. Kountouris, and M. Debbah, “Massive MIMO and small cells: Improving energy efficiency by optimal soft-cell coordination,” in Proc. IEEE Int. Conf. on Telecommun., Casablanca, Morocco, May 2013, pp. 1–5.

    Google Scholar 

  25. X. Ge, H. Cheng, M. Guizani, and T. Han, “5G wireless backhaul networks: Challenges and research advances,” IEEE Network, vol. 28, no. 6, pp. 6–11, Dec. 2014.

    Google Scholar 

  26. S. Tombaz, P. Monti, F. Farias, M. Fiorani, L. Wosinska, and J. Zander, “Is backhaul becoming a bottleneck for green wireless access networks?” in Proc. IEEE Int. Conf. Commun., Sydney, Australia, Jun. 2014, pp. 4029–4035.

    Google Scholar 

  27. S. Tombaz, P. Monti, K. Wang, A. Vastberg, M. Forzati, and J. Zander, “Impact of backhauling power consumption on the deployment of heterogeneous mobile networks,” in Proc. IEEE Global Telecomm. Conf., Houston, TX, Dec. 2011, pp. 1–5.

    Google Scholar 

  28. M. Sanchez-Fernandez, S. Zazo, and R. Valenzuela, “Performance comparison between beamforming and spatial multiplexing for the downlink in wireless cellular systems,” IEEE Trans. Wireless Commun., vol. 6, no. 7, pp. 2427–2431, Jul. 2007.

    Google Scholar 

  29. H. Shirani-Mehr, G. Caire, and M. J. Neely, “MIMO downlink scheduling with non-perfect channel state knowledge,” IEEE Trans. Commun., vol. 58, no. 7, pp. 2055–2066, Jul. 2010.

    Google Scholar 

  30. V. Chandrasekhar and J. G. Andrews, “Spectrum allocation in tiered cellular networks,” IEEE Trans. Commun., vol. 57, no. 10, pp. 3059–3068, Oct. 2009.

    Google Scholar 

  31. W. C. Cheung, T. Q. S. Quek, and M. Kountouris, “Throughput optimization, spectrum allocation, and access control in two-tier femtocell networks,” IEEE J. Sel. Areas Commun., vol. 30, no. 3, pp. 561–574, Apr. 2012.

    Google Scholar 

  32. T. Zahir, K. Arshad, A. Nakata, and K. Moessner, “Interference management in femtocells,” IEEE Commun. Surveys and Tutorials, vol. 15, no. 1, pp. 293–311, 2013.

    Google Scholar 

  33. M. Peng, C. Wang, J. Li, H. Xiang, and V. Lau, “Recent advances in underlay heterogeneous networks: Interference control, resource allocation, and self-organization,” IEEE Commun. Surveys and Tutorials, vol. 17, no. 2, pp. 700–729, May. 2015.

    Google Scholar 

  34. H. S. Dhillon and G. Caire, “Wireless backhaul networks: Capacity bound, scalability analysis and design guidelines,” IEEE Trans. Wireless Commun., vol. 14, no. 11, pp. 6043–6056, Nov. 2015.

    Google Scholar 

  35. S. Singh, M. N. Kulkarni, A. Ghosh, and J. G. Andrews, “Tractable model for rate in self-backhauled millimeter wave cellular networks,” IEEE J. Sel. Areas Commun., vol. 33, no. 10, pp. 2196–2211, Oct. 2015.

    Google Scholar 

  36. Z. Shen, A. Khoryaev, E. Eriksson, and X. Pan, “Dynamic uplink-downlink configuration and interference management in TD-LTE,” IEEE Commun. Mag., vol. 50, no. 11, pp. 51–59, Nov. 2012.

    Google Scholar 

  37. M. Ding, D. Lopez Perez, A. V. Vasilakos, and W. Chen, “Dynamic TDD transmissions in homogeneous small cell networks,” in Proc. IEEE Int. Conf. Commun., Sydney, Australia, Jun. 2014, pp. 616–621.

    Google Scholar 

  38. Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multi-user MIMO downlink,” IEEE Commun. Mag., vol. 42, no. 10, pp. 60–67, Oct. 2004.

    Google Scholar 

  39. S. Wagner, R. Couillet, M. Debbah, and D. T. Slock, “Large system analysis of linear precoding in correlated miso broadcast channels under limited feedback,” IEEE Trans. Inf. Theory, vol. 58, no. 7, pp. 4509–4537, Jul. 2012.

    Google Scholar 

  40. G. Geraci, M. Egan, J. Yuan, A. Razi, and I. B. Collings, “Secrecy sum-rates for multi-user MIMO regularized channel inversion precoding,” IEEE Trans. Commun., vol. 60, no. 11, pp. 3472–3482, Nov. 2012.

    Google Scholar 

  41. G. Geraci, A. Y. Al-Nahari, J. Yuan, and I. B. Collings, “Linear precoding for broadcast channels with confidential messages under transmit-side channel correlation,” IEEE Commun. Lett., vol. 17, no. 6, pp. 1164–1167, Jun. 2013.

    Google Scholar 

  42. G. Geraci, R. Couillet, J. Yuan, M. Debbah, and I. B. Collings, “Large system analysis of linear precoding in MISO broadcast channels with confidential messages,” IEEE J. Sel. Areas Commun., vol. 31, no. 9, pp. 1660–1671, Sep. 2013.

    Google Scholar 

  43. E. Björnson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer?” IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 3059–3075, Jun. 2015.

    Google Scholar 

  44. A. Mezghani and J. A. Nossek, “Power efficiency in communication systems from a circuit perspective,” in IEEE Int. Symp. on Circuits and Systems, Rio de Janeiro, May 2011, pp. 1896–1899.

    Google Scholar 

  45. S. Tombaz, A. Västberg, and J. Zander, “Energy-and cost-efficient ultra-high-capacity wireless access,” IEEE Wireless Commun., vol. 18, no. 5, pp. 18–24, Oct. 2011.

    Google Scholar 

  46. H. Yang and T. L. Marzetta, “Total energy efficiency of cellular large scale antenna system multiple access mobile networks,” in IEEE Online GreenCom, Oct. 2013, pp. 27–32.

    Google Scholar 

  47. T. Chen, H. Kim, and Y. Yang, “Energy efficiency metrics for green wireless communications,” in Proc. IEEE Int. Conf. Wireless Commun. and Signal Processing, Suzhou, China, 2010, pp. 1–6.

    Google Scholar 

  48. S. Singh, H. S. Dhillon, and J. G. Andrews, “Offloading in heterogeneous networks: Modeling, analysis, and design insights,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 2484–2497, May 2013.

    Google Scholar 

  49. G. Caire and S. Shamai, “On the achievable throughput of a multiantenna gaussian broadcast channel,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1691–1706, Jul. 2003.

    Google Scholar 

  50. Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 461–471, Feb. 2004.

    Google Scholar 

  51. T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 528–541, Mar. 2006.

    Google Scholar 

  52. G. Auer, V. Giannini, C. Desset, I. Godor, P. Skillermark, M. Olsson, M. A. Imran, D. Sabella, M. J. Gonzalez, O. Blume et al., “How much energy is needed to run a wireless network?” IEEE Wireless Commun. Mag., vol. 18, no. 5, pp. 40–49, Oct. 2011.

    Google Scholar 

  53. B. Debaillie, C. Desset, and F. Louagie, “A flexible and future-proof power model for cellular base stations,” in IEEE Vehicular Technology Conference, Glasgow, Scotland, May 2015, pp. 1–7.

    Google Scholar 

  54. F. Baccelli and B. Blaszczyszyn, Stochastic Geometry and Wireless Networks. Volumn I: Theory.Now Publishers, 2009.

    Google Scholar 

  55. H. H. Yang, G. Geraci, and T. Q. S. Quek, “Rate analysis of spatial multiplexing in MIMO heterogeneous networks with wireless backhaul,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Shanghai, China, Mar. 2016.

    Google Scholar 

  56. D. N. C. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge University Press, 2005.

    Google Scholar 

  57. G. Geraci, H. S. Dhillon, J. G. Andrews, J. Yuan, and I. Collings, “Physical layer security in downlink multi-antenna cellular networks,” IEEE Trans. Commun., vol. 62, no. 6, pp. 2006–2021, Jun. 2014.

    Google Scholar 

  58. K. A. Hamdi, “A useful lemma for capacity analysis of fading interference channels,” IEEE Trans. Commun., vol. 58, no. 2, pp. 411–416, Feb. 2010.

    Google Scholar 

  59. M. Haenggi, Stochastic geometry for wireless networks. Cambridge University Press, 2012.

    Google Scholar 

  60. S. Singh, X. Zhang, and J. Andrews, “Joint rate and SINR coverage analysis for decoupled uplink-downlink biased cell associations in hetnets,” IEEE Trans. Wireless Commun., vol. 14, no. 10, pp. 5360–5373, Oct. 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard H. Yang .

Appendix

Appendix

Proof of Lemma 3.1

The channel matrix between a MBS to its \(K_{\mathrm {m}}\) associated UEs can be written as \(\hat{\mathbf {H}} = \mathbf {L}^{\frac{1}{2}} \mathbf {H}\), where \(\mathbf {L} = \text {diag}\{L_1^{-1}, \ldots , L_{K_\mathrm m}^{-1}\}\), with \(L_i = r_i^\alpha / S_i\) being the path loss from the MBS to its ith UE, where \(r_i\) is the corresponding distance and \(S_i\) denotes the shadowing, \(\mathbf {H} = [\mathbf {h}_1,\ldots ,\mathbf {h}_{K_\mathrm m}]^{\text {T}}\) is the \(K_\mathrm m \times M_\mathrm m\) small-scale fading matrix, with \(\mathbf {h}_i \sim {CN}\left( \mathbf {0}, \mathbf {I}\right) \). The ZF precoder is then given by \(\mathbf {W} = \xi \hat{\mathbf {H}}^{*} ( \hat{\mathbf {H}}\hat{\mathbf {H}}^{*})^{-1}\), where \(\xi ^2 = 1 / \text {tr}[ (\hat{\mathbf {H}}^{*}\hat{\mathbf {H}})^{-1}]\) normalizes the transmit power [56]. In the following, we use the notation \(\varPhi ^{\mathrm {U}}\) as \(\varPhi ^{\mathrm {D}}\) to denote the subsets of \(\varPhi \) that transmit in uplink and downlink, respectively, we further denote \(\mathscr {U}_x\) as the set of UEs that are associated with access point x, and denote \(\hat{x}\) as the transmitter that locates closest to the origin. Since the locations of MBSs and SAPs follow a stationary PPP, we can apply the Slivnyark’s theorem [54], which implies that it is sufficient to evaluate the SINR of a typical UE at the origin. As such, by noticing that under dynamic TDD, every wireless link experiences interference from the downlink transmitting MBSs and SAPs, and from the uplink transmitting UEs, the downlink SINR between a typical UE at the origin and its serving MBS can be written as

$$\begin{aligned} \gamma _{\mathrm m}^{\text {DL}} = \dfrac{P_{\mathrm {mt}}\vert \mathbf {h}_{\hat{x}_{\mathrm {m}},o}^{*} \mathbf {w}_{\hat{x}_{\mathrm {m}},o} \vert ^2 L_{\hat{x}_{\mathrm {m}},o}^{-1} }{I_{\mathrm {oc}}^{\mathrm {mu}} + I_\mathrm u + \sigma ^2}, \end{aligned}$$
(3.25)

where \(\mathbf {h}_{\hat{x}_{\mathrm {m}},o}\) is the small-scale fading, \(\mathbf {w}_{\hat{x}_{\mathrm {m}},o}\) is the ZF precoding vector, \(L_{\hat{x}_{\mathrm {m}},o}\) denotes the corresponding path loss, while \(I_{\mathrm {oc}}^{\mathrm {mu}}\) is the aggregate interference from other cells to the MBS UE, and \(I_\mathrm u\) denotes the interference from UEs, respectively given as follows:

$$\begin{aligned} I_{\mathrm {oc}}^{\mathrm {mu}}&= \sum \limits _{x_\mathrm {m} \in \varPhi _{\text {m}}^{\mathrm {D}} \setminus \hat{x}_{\mathrm {m}}} \dfrac{P_{\mathrm {mt}}g_{x_\mathrm {m},o}}{ K_\mathrm m L_{x_{\mathrm {m}},o}} + \sum \limits _{x_\mathrm {s} \in \varPhi _{\text {s}}^{\mathrm {D}}} \dfrac{P_{\mathrm {st}}g_{x_\mathrm {s},o}}{ K_\mathrm s L_{x_{\mathrm {s}},o} } \end{aligned}$$
(3.26)

and

$$\begin{aligned} I_\mathrm u&= \sum \limits _{x_{\mathrm {u}} \in \varPhi _{\text {u}}^{\mathrm {U}} } \dfrac{P_{\mathrm {ut}}\vert h_{x_{\mathrm {u}},o} \vert ^2}{L_{x_{\mathrm {u}},o} }, \end{aligned}$$
(3.27)

whereas \(g_{x_\mathrm {m},o}\) and \(g_{x_\mathrm {s},o}\) represent the effective small-scale fading from the interfering MBS \(x_\mathrm {m}\) and SAP \(x_\mathrm {s}\) to the origin, respectively, given by [57]

$$\begin{aligned} g_{x_\mathrm {m},o} = \sum _{u \in \mathscr {U}_{x_\mathrm {m}}} K_{\mathrm {m}}\vert \mathbf {h}_{x_\mathrm {m},o}^{*} \mathbf {w}_{x_\mathrm {m},u} \vert ^2 \sim \varGamma \left( K_{\mathrm {m}}, 1\right) \end{aligned}$$
(3.28)

and

$$\begin{aligned} g_{x_\mathrm {s},o} = \sum _{u \in \mathscr {U}_{x_\mathrm {s}}} K_{\mathrm {s}}\vert \mathbf {h}_{x_\mathrm {s},o}^{*} \mathbf {w}_{x_\mathrm {s},u} \vert ^2 \sim \varGamma \left( K_{\mathrm {s}}, 1\right) . \end{aligned}$$
(3.29)

By conditioning on the interference, when \(K_{\mathrm {m}}, M_{\mathrm {m}}\rightarrow \infty \) with \(\beta _{\mathrm m} = K_{\mathrm {m}}/ M_{\mathrm {m}}< 1\), the SINR under ZF precoding converges to [39]

$$\begin{aligned} \gamma _{\mathrm m }^{\text {DL}} \rightarrow \bar{\gamma }_{\mathrm m }^{\text {DL}} = \dfrac{P_{\mathrm {mt}}M_{\mathrm {m}}}{\left( I_{\mathrm {oc}}^{\mathrm {mu}} + I_\mathrm u + \sigma ^2\right) \sum _{j=1}^{K_{\mathrm {m}}} {e}_j^{-1}}, \,\,\, a.s. \end{aligned}$$
(3.30)

where \({e}_i\) is the solution of the fixed point equation

$$\begin{aligned} \dfrac{L_{\hat{x}_{\mathrm {m}},u_i}^{-1}}{{e}_i} = 1 + \dfrac{J}{M_{\mathrm {m}}},~i = 1, 2, \ldots , K_{\mathrm {m}}\end{aligned}$$
(3.31)

with \(J = \sum _{j=1}^{K_{\mathrm {m}}} {L_{\hat{x}_{\mathrm {m}},u_j}^{-1}}{{e}_j^{-1}}\). By summing (3.31) over i we obtain

$$\begin{aligned} J = K_{\mathrm {m}}+ \frac{K_{\mathrm {m}}}{M_{\mathrm {m}}}J. \end{aligned}$$
(3.32)

Solving the equation above results in \(J=K_{\mathrm {m}}M_{\mathrm {m}}/ (M_{\mathrm {m}}- K_{\mathrm {m}})\), and by substituting the value of J into (3.31) we can have

$$\begin{aligned} \dfrac{1}{\bar{e}_i} = \frac{M_{\mathrm {m}}}{M_{\mathrm {m}}-K_{\mathrm {m}}} \cdot L_{\hat{x}_{\mathrm {m}},u_i}, \end{aligned}$$
(3.33)

which substituted into (3.30) yields

$$\begin{aligned} \bar{\gamma }_{\mathrm m }^{\text {DL}} = \dfrac{ \left( 1 - \beta _{\mathrm m} \right) M_{\mathrm {m}}P_{\mathrm {mt}}}{\left( I_{\mathrm {oc}}^{\mathrm {mu}} + I_\mathrm u + \sigma ^2\right) \sum ^{K_{\mathrm {m}}}_{j=1} L_{\hat{x}_{\mathrm {m}},u_j}}.\qquad \end{aligned}$$
(3.34)

Notice that \(\{L_{\hat{x}_{\mathrm {m}},u_j}\}_{j=1}^{K_{\mathrm {m}}}\) is an independent i.i.d. sequence with finite first moment, given by

$$\begin{aligned} \mathbb {E} \left[ L_{\hat{x}_{\mathrm {m}},u_j} \right] = \varGamma \left( 1 + \frac{1}{\delta }\right) G_\mathrm {m}^{-1} < \infty , \end{aligned}$$

by applying the strong law of large numbers (SLLN) to (3.34), we have

$$\begin{aligned} \bar{\gamma }_{\mathrm m }^{\text {DL}} \rightarrow \frac{ \left( 1 - \beta _{\mathrm m} \right) G_\mathrm {m}^{1/ \delta } P_{\mathrm {mt}}}{\beta _{\mathrm m} \varGamma \left( 1 + \frac{1}{\delta }\right) \left( I_{\mathrm {oc}}^{\mathrm {mu}} + I_\mathrm u + \sigma ^2\right) }, \quad a.s. \end{aligned}$$
(3.35)

As such, using the continuous mapping theorem and the lemma in [58], we can compute the ergodic rate as

$$\begin{aligned} \mathbb {E}\left[ \log _2\left( 1+\bar{\gamma }_{\mathrm m }^{\text {DL}}\right) \right]&= \frac{1}{\ln 2}\mathbb {E}\left[ \ln \left( 1+\frac{\nu _{\mathrm {m}}^{\mathrm {D}}}{I_{\mathrm {oc}}^{\mathrm {mu}} + I_\mathrm u + \sigma ^2}\right) \right] \nonumber \\&= \int _0^\infty \frac{e^{-\sigma ^2 z}}{z \ln 2} \left( 1 - e^{-\nu _\mathrm {m}^{\mathrm {D}} z} \right) \mathbb {E}\left[ e^{-z I_{\mathrm {u}}}\right] \mathbb {E}\left[ e^{-z I_{\mathrm {oc}}^{\mathrm {mu}}}\right] dz. \end{aligned}$$
(3.36)

Due to the composition of independent PPPs and the displacement theorem [59], the interference \(I_{\text {u}}\) follows a homogeneous PPP with spatial density \(\tilde{\lambda }_{\text {u}} = \left( 1-\tau _{\mathrm {m}}\right) \lambda _{\mathrm {m}} K_{\mathrm {m}}+ \left( 1-\tau _{\mathrm {s}}\right) \lambda _{\mathrm {s}}K_{\mathrm {s}}\), and the corresponding Laplace transform is given as [54]

$$\begin{aligned} \mathbb {E} \left[ e^{-z I_{\text {u}}} \right] = \exp \left( - \dfrac{2 \pi ^2 \tilde{\lambda }_{\text {u}} \mathbb {E}[S_{\mathrm {D}}^{\frac{2}{\alpha }}] P_{\mathrm {ut}}^{\frac{2}{\alpha }} z^{\frac{2}{\alpha }}}{\alpha \sin \left( \frac{2 \pi }{\alpha } \right) } \right) . \end{aligned}$$
(3.37)

As for the Laplace transform of \(I_{\mathrm {oc}}^{\mathrm {mu}}\), the conditional Laplace transform on \(L_{\hat{x}_{\mathrm {m}},o}\) can be computed as

$$\begin{aligned}&\mathbb {E}\left[ e^{-z I_{\mathrm {oc}}^{\mathrm {mu}}} | L_{\hat{x}_{\mathrm {m}},o} = t\right] \nonumber \\&= \exp \! \left( - \tau _{\mathrm {m}}a_\mathrm {m} \mathscr {C}_{\alpha , K_{\mathrm {m}}} \! \left( z P_{\mathrm {mt}}, t \right) \! \left( \frac{z P_{\mathrm {mt}}}{K_{\mathrm {m}}} \right) ^{\delta } \!\!- \tau _{\mathrm {s}}a_\mathrm {s} \mathscr {C}_{\alpha , K_{\mathrm {s}}} \! \left( z P_{\mathrm {mt}}, t \right) \! \left( \frac{z P_{\mathrm {st}}}{K_{\mathrm {s}}} \right) ^{\delta } \right) . \end{aligned}$$
(3.38)

Notice that \(L_{\hat{x}_{\mathrm {m}},o}\) has its distribution given by (3.13), and the rate \(R_{\mathrm {m}}^{\mathrm {DL}}\) given as

$$\begin{aligned} R_{\mathrm {m}}^{\mathrm {DL}} = \left( 1 - \zeta _{\mathrm {b}} \right) \mathbb {E}\left[ \log _2\left( 1+\bar{\gamma }_{\mathrm m }^{\text {DL}}\right) \right] , \end{aligned}$$
(3.39)

substituting (3.37) and (3.38) into (3.36), and decondition \(L_{\hat{x}_{\mathrm {m}},o}\) with respect to (3.13) we have the corresponding result.

Proof of Lemma 3.2

Let us consider a UE transmitting in uplink to a typical MBS located at the origin, which employs a ZF receive filter \(\mathbf {r}_{o,\hat{x}_{\mathrm {u}}}^* = \hat{\mathbf {h}}_{o,\hat{x}_{\mathrm {u}}}^* ( \sum _{u \in \mathscr {U}_o } \hat{\mathbf {{h}}}_{o,u} \hat{\mathbf {h}}_{o,u}^{*} )^{-1}\) [56], the SINR is then given by

$$\begin{aligned} \gamma _{\mathrm {m}}^{\text {UL}} = \dfrac{P_{\mathrm {ut}}L_{o,\hat{x}_\mathrm {u}}^{-1} \vert \mathbf {r}_{o,\hat{x}_\mathrm {u}}^{*} \mathbf {h}_{o,\hat{x}_\mathrm {u}} \vert ^2}{ \left( I_{\mathrm {oc}}^{\mathrm {mbs}} + I_\mathrm u + \sigma ^2 \right) \Vert \mathbf {r}_{o,\hat{x}_\mathrm {u}} \Vert ^2 }, \end{aligned}$$
(3.40)

where \(I_{\mathrm {oc}}^{\mathrm {mbs}}\) denotes the interference from other cells received at the MBS. By conditioning on the interference, when \(K_{\mathrm {m}}, M_{\mathrm {m}}\rightarrow \infty \) with \(\beta _\mathrm m = K_{\mathrm {m}}/ M_{\mathrm {m}}< 1\), the SINR above converges to [39]

$$\begin{aligned} \gamma _{\mathrm m}^{\text {UL}} \rightarrow \bar{\gamma }_{\mathrm m}^{\text {UL}} = \frac{P_{\mathrm {ut}}M_{\mathrm {m}}(1-\beta _\mathrm m) L_{o,\hat{x}_{\mathrm {u}}}^{-1} }{I_{\mathrm {oc}}^{\mathrm {mbs}} + I_\mathrm u + \sigma ^2}, \quad a.s. \end{aligned}$$
(3.41)

By using the continuous mapping theorem [58], the uplink ergodic rate can be calculated as

$$\begin{aligned} \mathbb {E}\left[ \log _2\left( 1 + \bar{\gamma }_{\mathrm {m}}^{\mathrm {UL}} \right) \right]&= \frac{1}{\ln 2} \mathbb {E}\left[ \ln \left( 1 + \frac{\nu _{\mathrm {m}}^{\mathrm {U}} L_{o,x_\mathrm {u}}^{-1} }{ I_{\mathrm {oc}}^{\mathrm {mbs}} + I_{\mathrm {u}} + \sigma ^2 } \right) \right] \nonumber \\&= \int _0^\infty \!\!\! \int _0^\infty \frac{e^{-\sigma ^2 z}}{z \ln 2} \left( 1 - e^{-z \nu _{\mathrm {m}}^{\mathrm {U}}/t } \right) \mathbb {E}\left[ e^{- z I_{\mathrm {u}}} \right] \mathbb {E}\left[ e^{-z I_{\mathrm {oc}}^{\mathrm {mbs}} } \right] f_{L_{\mathrm {m}}}(t) dz dt. \end{aligned}$$
(3.42)

The Laplace transform of \(I_{\mathrm {oc}}^{\mathrm {mbs}}\) can be computed as

$$\begin{aligned}&\mathbb {E}\left[ e^{-z I_{\mathrm {oc}}^{\mathrm {mbs}} } \right] \nonumber \\&= \exp \! \left( - \frac{ \varGamma \! \left( 1 \!+\! \delta \right) \delta \pi ^2 z^\delta }{\sin (\delta \pi )} \left[ \frac{ \tau _{\mathrm {m}}a_\mathrm {m} P_{\mathrm {mt}}^\delta \prod _{i=1}^{K_{\mathrm {m}}-1} (i\!+\!\delta ) }{\varGamma (K_{\mathrm {m}}) K_{\mathrm {m}}^\delta } \! + \! \frac{ \tau _{\mathrm {s}}a_\mathrm {s} P_{\mathrm {st}}^\delta \prod _{i=1}^{K_{\mathrm {s}}-1} (i\!+\!\delta ) }{\varGamma (K_{\mathrm {s}}) K_{\mathrm {s}}^\delta }\right] \right) . \end{aligned}$$
(3.43)

On the other hand, to consider the uplink interference from UEs, we use the result in [60] where the path loss from MBS UEs and SAP UEs are modeled as two independent inhomogeneous PPP with intensity measure being

$$\begin{aligned} \varLambda _{\mathrm {mu}}^{(\mathrm {m})}(dx)&= \delta a_{\mathrm {m}} x^{\delta -1} \left[ 1 - \exp \left( - G_{\mathrm {m}} x^\delta \right) \right] ,\end{aligned}$$
(3.44)
$$\begin{aligned} \varLambda _{\mathrm {su}}^{(\mathrm {m})}(dx)&= \delta a_{\mathrm {s}} x^{\delta -1} \left[ 1 - \exp \left( - G_{\mathrm {m}} x^\delta \right) \right] . \end{aligned}$$
(3.45)

The Laplace transform of the UE interference can then be calculated as

$$\begin{aligned} \mathbb {E}[e^{-z I_{\mathrm {u}}}]&= \exp \left( - (1-\tau _{\mathrm {m}}) K_{\mathrm {m}}\int _{0}^\infty \frac{\varLambda _{\mathrm {mu}}^{(\mathrm {m})}(dx)}{1 + z^{-1}x/P_{\mathrm {ut}}} - (1-\tau _{\mathrm {s}}) K_{\mathrm {s}}\int _{0}^\infty \frac{\varLambda _{\mathrm {su}}^{(\mathrm {m})}(dx)}{1 + z^{-1} x/P_{\mathrm {ut}}} \right) \nonumber \\&= \exp \left( - \tilde{\lambda }_{\mathrm {u}} \pi \mathbb {E}[S_{\mathrm {D}}^{\delta }] \int _0^\infty \frac{1 - e^{ - G_\mathrm {m} u }}{1 + z^{-1} u^{\frac{1}{\delta }}/P_{\mathrm {ut}}} du \right) . \end{aligned}$$
(3.46)

As such, noticing that

$$\begin{aligned} R_{\mathrm {m}}^{\mathrm {UL}} = \left( 1 - \zeta _{\mathrm {b}} \right) \mathbb {E}\left[ \log _2\left( 1 + \bar{\gamma }_{\mathrm {m}}^{\mathrm {UL}} \right) \right] \end{aligned}$$
(3.47)

the result follows by substituting (3.43) and (3.46) into (3.42).

Proof of Lemma 3.7

The average rate for a typical UE located at the origin is given by

$$\begin{aligned} R = A_\mathrm m R_\mathrm m + A_\mathrm s R_\mathrm s, \end{aligned}$$
(3.48)

where \(R_\mathrm m\) and \(R_\mathrm s\) are the data rates when the UE associates to a MBS and a SAP, respectively, given by

$$\begin{aligned} R_\mathrm m =\tau _{\mathrm {m}}{R}^{\mathrm {DL}}_\mathrm m + (1 - \tau _{\mathrm {m}}) {R}^{\mathrm {UL}}_\mathrm m \end{aligned}$$
(3.49)

and

$$\begin{aligned} R_\mathrm s = \tau _{\mathrm {s}}\min \left\{ {R}_{\mathrm s}^{\mathrm {DL}} , {R}_{\mathrm b}^{\mathrm {DL}} \right\} + (1 - \tau _{\mathrm {s}}) \min \left\{ {R}_{\mathrm s}^{\mathrm {UL}} , {R}_{\mathrm b}^{\mathrm {UL}} \right\} . \end{aligned}$$
(3.50)

As each MBS and each SAP serve \(K_{\mathrm {m}}\) and \(K_{\mathrm {s}}\) UEs, respectively, the total density of active UEs is given by \(K_\mathrm m \lambda _{\mathrm {m}}+ K_\mathrm s \lambda _{\mathrm {s}}\). Let B be the available bandwidth, the sum rate per area is obtained as \(\mathscr {R} = \left( K_\mathrm m \lambda _{\mathrm {m}}+ K_\mathrm s \lambda _{\mathrm {s}}\right) B R\). Lemma 3.7 then follows from Lemmas 3.1 to 3.6 and by the continuous mapping theorem.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Yang, H.H., Quek, T.Q.S. (2017). Massive MIMO in Small Cell Networks: Wireless Backhaul. In: Massive MIMO Meets Small Cell. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-43715-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43715-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43713-2

  • Online ISBN: 978-3-319-43715-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics