Skip to main content

Molecular Dynamics Simulations and XAFS (MD-XAFS)

  • Chapter
  • First Online:
XAFS Techniques for Catalysts, Nanomaterials, and Surfaces

Abstract

MD-XAFS (Molecular Dynamics X-ray Adsorption Fine Structure) makes the connection between simulation techniques that generate an ensemble of molecular configurations and the direct signal observed from X-ray measurement. Due to the fact that the signal is most sensitive to the structure nearest to a photoelectron source, an understanding of XAFS signal is an exquisite tool for decoding the nearest neighbor coordination and correlated structure of the solvent molecules surrounding the photo-electron source. The XAFS signal can be constructed from an ensemble of scattering paths. Often the signal cannot be decomposed into a few dominant paths with characteristics that can be fitted. MD-XAFS takes advantage of the direct correspondence between the ensemble of molecular configurations and the ensemble of scattering paths, taking into account the complex correlation between them resulting in the observed signal. Due to the fact that significant phenomena are controlled by solvent response and fluctuations, such as diffusion and speciation of species, the establishment of the connection between molecular simulation and experiment has established utility in materials and catalysis systems.

Below we will expand on a variety of approaches that enhance the interpretation of MD-XAFS analysis. We will give examples of its utility in a variety of systems, including 1) the solvation of transition metal ions in water 2) an example of an analysis of a reactive chemistry corresponding to homogeneous catalysis 3) the distribution of reaction centers in a heterogeneous catalysis system as well as 4) fundamental analysis of acid/base equilibrium as a function of concentration. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rehr JJ, Kas JJ, Vila FD, Prange MP, Jorissen K (2010) Parameter-free calculations of X-ray spectra with FEFF9. Phys Chem Chem Phys 12(21):5503–5513

    Article  CAS  Google Scholar 

  2. Rehr JJ, Kas JJ, Prange MP, Sorini AP, Takimoto Y, Vila F (2009) Ab initio theory and calculations of X-ray spectra. C R Phys 10(6):548–559

    Article  CAS  Google Scholar 

  3. Rehr JJ, Albers RC (2000) Theoretical approaches to x-ray absorption fine structure. Rev Mod Phys 72(3):621–654

    Article  CAS  Google Scholar 

  4. Palmer BJ, Pfund DM, Fulton JL (1996) Direct modeling of EXAFS spectra from molecular dynamics simulations. J Phys Chem 100(32):13393–13398

    Article  CAS  Google Scholar 

  5. Wallen SL, Palmer BJ, Pfund DM, Fulton JL, Newville M, Ma YJ, Stern EA (1997) Hydration of bromide ion in supercritical water: an X-ray absorption fine structure and molecular dynamics study. J Phys Chem A 101(50):9632–9640

    Article  CAS  Google Scholar 

  6. Wallen SL, Palmer BJ, Fulton JL (1998) The ion pairing and hydration structure of Ni2+ in supercritical water at 425 degrees C determined by x-ray absorption fine structure and molecular dynamics studies. J Chem Phys 108(10):4039–4046

    Article  CAS  Google Scholar 

  7. Fulton JL, Hoffmann MM, Darab JG, Palmer BJ, Stern EA (2000) Copper(I) and copper(II) coordination structure under hydrothermal conditions at 325 degrees C: an X-ray absorption fine structure and molecular dynamics study. J Phys Chem A 104(49):11651–11663

    Article  CAS  Google Scholar 

  8. Hoffmann MM, Darab JG, Palmer BJ, Fulton JL (1999) A transition in the Ni2+ complex structure from six- to four-coordinate upon formation of ion pair species in supercritical water: an X-ray absorption fine structure, near-infrared, and molecular dynamics study. J Phys Chem A 103(42):8471–8482

    Article  CAS  Google Scholar 

  9. McCarthy MI, Schenter GK, ChaconTaylor MR, Rehr JJ, Brown GE (1997) Prediction of extended x-ray-absorption fine-structure spectra from molecular interaction models: Na+(H2O)(n)-MgO (100) interface. Phys Rev B 56(15):9925–9936

    Article  CAS  Google Scholar 

  10. Campbell L, Rehr JJ, Schenter GK, McCarthy MI, Dixon D (1999) XAFS Debye-Waller factors in aqueous Cr +3 from molecular dynamics. J Synchrotron Radiat 6:310–312

    Google Scholar 

  11. Dang LX, Schenter GK, Fulton JL (2003) EXAFS spectra of the dilute solutions of Ca2+ and Sr2+ in water and methanol. J Phys Chem B 107(50):14119–14123

    Article  CAS  Google Scholar 

  12. Dang LX, Schenter GK, Glezakou VA, Fulton JL (2006) Molecular simulation analysis and X-ray absorption measurement of Ca2+, K+ and Cl- ions in solution. J Phys Chem B 110(47):23644–23654

    Article  CAS  Google Scholar 

  13. Glezakou V-A, Chen YS, Fulton JL, Schenter GK, Dang LX (2006) Electronic structure, statistical mechanical simulations and EXAFS spectroscopy of aqueous potassium. Theor Chem Acc 115:86–99

    Article  CAS  Google Scholar 

  14. Nichols P, Bylaska EJ, Schenter GK, de Jong W (2008) Equatorial and apical solvent shells of the UO(2)(2+) ion. J Chem Phys 128(12):124507

    Article  Google Scholar 

  15. Fulton JL, Kathmann SM, Schenter GK, Balasubramanian M (2009) Hydrated structure of Ag(I) ion from symmetry-dependent, K- and L-edge XAFS multiple scattering and molecular dynamics simulations. J Phys Chem A 113(50):13976–13984

    Article  CAS  Google Scholar 

  16. Cauet E, Bogatko S, Weare JH, Fulton JL, Schenter GK, Bylaska EJ (2010) Structure and dynamics of the hydration shells of the Zn2+ ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations. J Chem Phys 132(1):194502

    Article  Google Scholar 

  17. Atta-Fynn R, Bylaska EJ, Schenter GK, de Jong WA (2011) Hydration shell structure and dynamics of curium(III) in aqueous solution: first principles and empirical studies. J Phys Chem A 115(18):4665–4677

    Article  CAS  Google Scholar 

  18. Atta-Fynn R, Johnson DF, Bylaska EJ, Ilton ES, Schenter GK, de Jong WA (2012) Structure and hydrolysis of the U(IV), U(V), and U(VI) aqua ions from ab initio molecular simulations. Inorg Chem 51(5):3016–3024

    Article  CAS  Google Scholar 

  19. Bogatko S, Cauet E, Bylaska E, Schenter G, Fulton J, Weare J (2013) The aqueous Ca2+ system, in comparison with Zn2+, Fe3+, and Al3+: an ab initio molecular dynamics study. Chem A Eur J 19(9):3047–3060

    Article  CAS  Google Scholar 

  20. Merkling PJ, Munoz-Paez A, Martinez JM, Pappalardo RR, Marcos ES (2001) Molecular-dynamics-based investigation of scattering path contributions to the EXAFS spectrum: the Cr3+ aqueous solution case. Phys Rev B 6401(1):2201

    Google Scholar 

  21. Carrera F, Torrico F, Richens DT, Munoz-Paez A, Martinez JM, Pappalardo RR, Sanchez Marcos E (2007) Combined experimental and theoretical approach to the study of structure and dynamics of the most inert aqua ion Ir(H2O)(6) (3+) in aqueous solution. J Phys Chem B 111(28):8223–8233

    Article  CAS  Google Scholar 

  22. Ferlat G, Soetens JC, San Miguel A, Bopp PA (2005) Combining extended x-ray absorption fine structure with numerical simulations for disordered systems. J Phys Condens Matter 17(5):S145–S157

    Article  CAS  Google Scholar 

  23. Pokrovski GS, Roux J, Ferlat G, Jonchiere R, Seitsonen AP, Vuilleumier R, Hazemann J-L (2013) Silver in geological fluids from in situ X-ray absorption spectroscopy and first-principles molecular dynamics. Geochim Cosmochim Acta 106:501–523

    Article  CAS  Google Scholar 

  24. Chaodamrongsakul J, Klysubun W, Vao-soongnern V (2014) Application of X-ray absorption spectroscopy and molecular dynamics simulation to study the atomistic solvation structure of tetraglyme:KSCN electrolytes. Mater Chem Phys 143(3):1508–1516

    Article  CAS  Google Scholar 

  25. Chaodamrongsakul J, Merat K, Klysubun W, Vao-soongnern V (2013) A combined molecular dynamic simulation and X-ray absorption spectroscopy to investigate the atomistic solvation structure of cation in poly(vinyl alcohol):potassium thiocyanate (KSCN) solid electrolytes. J Non-Cryst Solids 379:21–26

    Article  CAS  Google Scholar 

  26. Timoshenko J, Anspoks A, Kalinko A, Kuzmin A (2014) Local structure and dynamics of wurtzite-type ZnO from simulation-based EXAFS analysis. Phys Status Solidi C 11(9–10):1472–1475

    Article  CAS  Google Scholar 

  27. Anspoks A, Kalinko A, Kalendarev R, Kuzmin A (2013) Probing vacancies in NiO nanoparticles by EXAFS and molecular dynamics simulations. 15th international conference on x-ray absorption fine structure (Xafs15) 2013, 430

    Google Scholar 

  28. Anspoks A, Kalinko A, Kalendarev R, Kuzmin A (2012) Atomic structure relaxation in nanocrystalline NiO studied by EXAFS spectroscopy: role of nickel vacancies. Phys Rev B 86(17):174114

    Article  Google Scholar 

  29. Migliorati V, Sessa F, Aquilanti G, D’Angelo P (2014) Unraveling halide hydration: a high dilution approach. J Chem Phys 141(4):044509

    Article  Google Scholar 

  30. D’Angelo P, Zitolo A, Migliorati V, Chillemi G, Duvail M, Vitorge P, Abadie S, Spezia R (2011) Revised ionic radii of lanthanoid(III) ions in aqueous solution. Inorg Chem 50(10):4572–4579

    Article  Google Scholar 

  31. Fulton JL, Bylaska EJ, Bogatko S, Balasubramanian M, Cauet E, Schenter GK, Weare JH (2012) Near-quantitative agreement of model-free DFT-MD predictions with XAFS observations of the hydration structure of highly charged transition-metal ions. J Phys Chem Lett 3(18):2588–2593

    Article  CAS  Google Scholar 

  32. Fulton JL, Schenter GK, Baer MD, Mundy CJ, Dang LX, Balasubramanian M (2010) Probing the hydration structure of polarizable halides: a multiedge XAFS and molecular dynamics study of the iodide anion. J Phys Chem B 114(40):12926–12937

    Article  CAS  Google Scholar 

  33. Baer MD, Pham VT, Fulton JL, Schenter GK, Balasubramanian M, Mundy CJ (2011) Is iodate a strongly hydrated cation? J Phys Chem Lett 2(20):2650–2654

    Article  CAS  Google Scholar 

  34. Baer MD, Fulton JL, Balasubramanian M, Schenter GK, Mundy CJ (2014) Persistent ion pairing in aqueous hydrochloric acid. J Phys Chem B 118(26):7211–7220

    Article  CAS  Google Scholar 

  35. Rousseau R, Schenter GK, Fulton JL, Linehan JC, Engelhard MH, Autrey T (2009) Defining active catalyst structure and reaction pathways from ab initio molecular dynamics and operando XAFS: dehydrogenation of dimethylaminoborane by rhodium clusters. J Am Chem Soc 131(30):10516–10524

    Article  CAS  Google Scholar 

  36. Vjunov A, Fulton JL, Huthwelker T, Pin S, Mei D, Schenter GK, Govind N, Camaioni DM, Hu JZ, Lercher JA (2014) Quantitatively probing the Al distribution in zeolites. J Am Chem Soc 136(23):8296–8306

    Article  CAS  Google Scholar 

  37. Chen YS, Fulton JL, Linehan JC, Autrey T (2005) In situ XAFS and NMR study of rhodium-catalyzed dehydrogenation of dimethylamine borane. J Am Chem Soc 127(10):3254–3255

    Article  CAS  Google Scholar 

  38. Fulton JL, Linehan JC, Autrey T, Balasubramanian M, Chen Y, Szymczak NK (2007) When is a nanoparticle a cluster? An operando EXAFS study of amine borane dehydrocoupling by Rh4−6 clusters. J Am Chem Soc 129(39):11936–11949

    Article  CAS  Google Scholar 

  39. Fulton JL, Balasubramanian M (2010) Structure of hydronium (H3O+)/chloride (Cl) contact ion pairs in aqueous hydrochloric acid solution: a zundel-like local configuration. J Am Chem Soc 132(36):12597–12604

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This development could not be achieved without the support from our colleagues including John Rehr, Maureen McCarthy, Bruce Palmer, Mali Balasubramanian, Chris Mundy, Marcel Baer, Liem Dang, Shawn Kathmann, Eric Bylaska, Roger Rousseau, Vanda Glezakou. This work was supported by the U.S. Department of Energy (DOE) Office of Science, Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the U.S. DOE by Battelle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Fulton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schenter, G.K., Fulton, J.L. (2017). Molecular Dynamics Simulations and XAFS (MD-XAFS). In: Iwasawa, Y., Asakura, K., Tada, M. (eds) XAFS Techniques for Catalysts, Nanomaterials, and Surfaces. Springer, Cham. https://doi.org/10.1007/978-3-319-43866-5_18

Download citation

Publish with us

Policies and ethics