Skip to main content

Optimal Motion of Flexible Objects with Oscillations Elimination at the Final Point

  • Conference paper
  • First Online:
New Trends in Mechanism and Machine Science

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 43))

Abstract

In this article, a theoretical justification of one type of skew-symmetric optimal translational motion (moving in the minimal acceptable time) of a flexible object carried by a robot from its initial to its final position of absolute quiescence with the exception of the oscillations at the end of the motion is presented. The Hamilton-Ostrogradsky principle is used as a criterion for searching an optimal control. The data of experimental verification of the control are presented using the Orthoglide robot for translational motions and several masses were attached to a flexible beam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shalymov, S.V.: Damping of oscillation of linearly damped elastic system by controlling the stiffness. Proc. Univ J. Instrum. 5, 36–42 (2003)

    Google Scholar 

  2. Krutko, P.D.: Oscillation control. J. Theory Control Syst. Izvestiya RAN 2, 24–41 (2003)

    MathSciNet  Google Scholar 

  3. Gasparetto, A., Lanzutti, A., Vidoni, R., Zanotto, V.: Validation of minimum Time-Jerk algorithms for trajectory planning of industrial robots. J. Mech. Robot. 3, 031003 (2011)

    Article  Google Scholar 

  4. Barre, P.J., Bearee, R., Borne, P., Dumetz, E.: Influence of a Jerk controlled movement law on the vibratory behaviour of high-dynamics systems. J. Intell. Rob. Syst. 42(3), 275–293 (2005)

    Article  Google Scholar 

  5. Gasparetto A., Boscariol P., Lanzutti A., Vidon R.: Trajectory planning in robotics. Math. Comput. Sci. 359–369 (2012)

    Google Scholar 

  6. Voronov, A.A.: Automatic Control Theory of Nonlinear and Special Systems, p. 288. Nauka, Moscow (1992)

    Google Scholar 

  7. Gorobetc I.A.: Industrial Robotics. Manipulators Mechanical Systems, Donetsk (2001)

    Google Scholar 

  8. Egorov, A.I.: Control Theory. Fizmalit, Moscow (2004)

    MATH  Google Scholar 

  9. Siciliano B., Sciavicco L., Villani L., Oriolo G.: Robotics. Modelling, Planning and Control, 2nd edn, p. 632. Springer, New York, Inc. Secaucus, NJ, USA (2009)

    Google Scholar 

  10. De Schutter, J.: Invariant description of rigid body motion trajectories. ASME J. Mech. Rob. 2, 011004 (2010)

    Article  Google Scholar 

  11. Besekersky, V.A.: Theory of Automatic Control Systems. Professiya, SPb (2003). 752 p

    Google Scholar 

  12. Constantinescu, D., Croft, E.A.: Smooth and time-optimal trajectory planning for industrial manipulators along Specified paths. J. Rob. Syst. 17(5), 233–249 (2000)

    Article  MATH  Google Scholar 

  13. Melnichuk, P.P., Samotokin, B.B., Polishchuk, M.N.: Flexible computerized systems: design, modeling and control, p. 785. Zhitomir (2005)

    Google Scholar 

  14. Matviychuk, A.R.: The task of optimal minimal time control of the object on the plane with phase constraints. J. Theory Syst. Control, Izvestiya RAN 1, 89–95 (2004)

    Google Scholar 

  15. Saramago, S.F.P., Steffen, V.: Optimization of the trajectory planning of robot manipulators tacking into account the dynamics of the system. Mech. Mach. Theory 33(7), 883–894 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Piazzi, A., Visioli, A.: Global Minimum-Jerk trajectory planning of robot manipulators. IEEE Trans. Ind. Electron. 47(1), 140–149 (2000)

    Article  Google Scholar 

  17. Lombai, F., Szederkenyi, G.: Throwing motion generation using nonlinear optimization on a 6-degree-of-freedom robot manipulator. In: Proceedings of IEEE International Conference on Mechatronics (2009)

    Google Scholar 

  18. Chwa, D., Kang, J., Choi, J.Y.: Online trajectory planning of robot arms for interception of fast maneuvering object under torque and velocity constraints. IEEE Trans. Syst. Man Cybern. Syst. Humans 35(6), 831–843 (2005)

    Article  Google Scholar 

  19. Cao, B., Dodds, G.I.: Implementation of near-time-optimal inspection task sequence planning for industrial robot arm. In: Proceedings of IEEE International Workshop Advanced Motion Control, Mie, Japan, vol. 2, pp. 693–698 (1996)

    Google Scholar 

  20. Munasinghe, S.R., Nakamura, M., Aoki, S., Goto, S., Kyura, N.: High speed precise control of robot arms with assigned speed under torque constraint by trajectory generation in joint coordinates. In: Proceedings of IEEE International Conference Systems, Man and Cybernetics, Tokyo, Japan, vol. 2, pp. 854–859 (1999)

    Google Scholar 

  21. Chernousko, F.L., Akulenko, L.D., Sokolov, B.N.: Oscillations Control, p. 384. Nauka, Moscow (1980)

    Google Scholar 

  22. Karnovsky, I.A., Pochtman, Y.M.: Oscillations Optimal Control Methods for Deformable Systems, p. 116. Vischa shkola, Kyiv (1982)

    Google Scholar 

  23. Bokhonsky, A.I., Varminska, N.I.: reverse principle of optimality in control tasks of translational motion of deformable objects, Vestnik SevNTU. J. Mech. Energetics Ecol. Sevastopol, 130–134 (2014)

    Google Scholar 

  24. Bokhonsky, A.I.: Actual Problems of Variational Calculation, p. 77. Palmarium Academic Publishing, Deutschland (2013)

    Google Scholar 

  25. Bokhonsky, A., Buchacz, A., Placzek, M., Wrobel, M.: Modelling and Investigation of Discrete-Continious Vibrating Mechatronic Systems with Damping, p. 171. Wydawnictwo Poitechniki, Gliwice (2011)

    Google Scholar 

  26. Bokhonsky, A.I., Varminska, N.I.: Optimum Braking of Flexible Object, Selected engineering problems, vol. 3, p. 220. Silesian University of Technology, Gliwice (2012)

    Google Scholar 

  27. Bokhonsky, A.I., Varminska, N.I.: Variational and Reversing Calculus in Mechanics, Sevastopol, 212 p (2012)

    Google Scholar 

  28. Bokhonsky, A.I., Buzanova, O.P.: Optimal design of rigidly-flexible frames under seismic influence. J. Strength Materials Structures Theory 64–69 (1977)

    Google Scholar 

  29. Bokhonsky, A.I., Isaeva, E.V.: Analysis of a rigid body motion with dry friction, Vestnik SevSTU. J. Phys. Math. Sevastopol 115–121 (2004)

    Google Scholar 

  30. Caro, S., Chablat, D., Lemoine, P., Wenger, P.: Kinematic analysis and trajectory planning of the Orthoglide 5-axis. In: IDETC and Computers and Information in Engineering Conference, Boston, USA (2015)

    Google Scholar 

  31. Chablat, D., Wenger, P.: Architecture optimization, of a 3-DOF parallel mechanism for machining applications, the Orthoglide. IEEE Trans. Robotics Autom. 19, 403410 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The work presented in this paper was partially funded by the Erasmus Mundus project “Active”. Both authors also thank A. Jubien, E. Besnier and P. Lemoine for their technical assistance during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Chablat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Varminska, N., Chablat, D. (2017). Optimal Motion of Flexible Objects with Oscillations Elimination at the Final Point. In: Wenger, P., Flores, P. (eds) New Trends in Mechanism and Machine Science. Mechanisms and Machine Science, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-44156-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44156-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44155-9

  • Online ISBN: 978-3-319-44156-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics