Skip to main content

The Right Rodent for the Job: Infarct Variability Between Strains and Its Impact on Logistics of Experimental Animal Studies

  • Chapter
  • First Online:
Neuroprotective Therapy for Stroke and Ischemic Disease

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

This chapter will discuss the variability in infarct size after ischaemic stroke in rat models of stroke, drawing example from our experience with the thread occlusion model. We will describe how the neuroprotective effect of a novel treatment diminished over the course of our testing, with post hoc analysis revealing wide variability in infarct volume in the experiments where the treatment was not shown to be protective. Application of various inclusion criteria failed to reduce variability, only reducing the number of animals. We then compared infarct variability in the Sprague-Dawley strain to other strains of rat used in our laboratory. The spontaneously hypertensive rat proved to be the most consistent strain of rat, having the least variable infarct volume, and stroke being successfully induced in all animals. The ability to include more animals in experimental groups is advantageous in terms of the absolute number of animals used, the time an experiment will take to complete and the cost of preclinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strom JO, Ingberg E, Theodorsson A, Theodorsson E (2013) Method parameters’ impact on mortality and variability in rat stroke experiments: a meta-analysis. BMC Neurosci 14:41, Epub 2013/04/04

    Article  PubMed  PubMed Central  Google Scholar 

  2. Koizumi J, Yoshida Y, Nakazawa T, Ooneda G (1986) Experimental studies of ischemic brain edema 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke 8:1–8

    Article  Google Scholar 

  3. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  CAS  PubMed  Google Scholar 

  4. Laing RJ, Jakubowski J, Laing RW (1993) Middle cerebral artery occlusion without craniectomy in rats. Which method works best? Stroke 24(2):294–297, discussion 7-8

    Article  CAS  PubMed  Google Scholar 

  5. Ma J, Zhao L, Nowak TS Jr (2006) Selective, reversible occlusion of the middle cerebral artery in rats by an intraluminal approach Optimized filament design and methodology. J Neurosci Methods 156(1-2):76–83

    Article  PubMed  Google Scholar 

  6. Schmid-Elsaesser R, Zausinger S, Hungerhuber E, Baethmann A, Reulen H-J, Garcia JH (1998) A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: Evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-doppler flowmetry—Editorial Comment: Evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-doppler flowmetry. Stroke 29(10):2162–2170

    Article  CAS  PubMed  Google Scholar 

  7. Spratt NJ, Fernandez J, Chen M, Rewell S, Cox S, van Raay L et al (2006) Modification of the method of thread manufacture improves stroke induction rate and reduces mortality after thread-occlusion of the middle cerebral artery in young or aged rats. J Neurosci Methods 155(2):285–290

    Article  PubMed  Google Scholar 

  8. Takano K, Tatlisumak T, Bergmann AG, Gibson DG III, Fisher M (1997) Reproducibility and reliability of middle cerebral artery occlusion using a silicone-coated suture (Koizumi) in rats. J Neurol Sci 153(1):8–11

    Article  CAS  PubMed  Google Scholar 

  9. Dirnagl U (2006) Bench to bedside: the quest for quality in experimental stroke research. J Cereb Blood Flow Metab 26:1465–1478

    Article  PubMed  Google Scholar 

  10. Liu S, Zhen G, Meloni BP, Campbell K, Winn HR (2009) Rodent stroke model guidelines for preclinical stroke trials (1st edition). J Exp Stroke Transl Med 2(2):2–27, Epub 2009/01/01

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brint S, Jacewicz M, Kiessling M, Tanabe J, Pulsinelli W (1988) Focal brain ischemia in the rat: methods for reproducible neocortical infarction using tandem occlusion of the distal middle cerebral and ipsilateral common carotid arteries. J Cereb Blood Flow Metab 8(4):474–485

    Article  CAS  PubMed  Google Scholar 

  12. Coert BA, Anderson RE, Meyer FB (1999) Reproducibility of cerebral cortical infarction in the wistar rat after middle cerebral artery occlusion. J Stroke Cerebrovasc Dis 8(6):380–387, Epub 2007/09/27

    Article  CAS  PubMed  Google Scholar 

  13. Duverger D, MacKenzie ET (1988) The quantification of cerebral infarction following focal ischemia in the rat: influence of strain, arterial pressure, blood glucose concentration, and age. J Cereb Blood Flow Metab 8(4):449–461

    Article  CAS  PubMed  Google Scholar 

  14. Hiramatsu K, Kassell NF, Goto Y, Soleau S, Lee KS (1993) A reproducible model of reversible, focal, neocortical ischemia in Sprague-Dawley rat. Acta Neurochir (Wien) 120(1-2):66–71

    Article  CAS  Google Scholar 

  15. Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM (1986) Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 17(6):1304–1308

    Article  CAS  PubMed  Google Scholar 

  16. He Z, Yamawaki T, Yang S, Day AL, Simpkins JW, Naritomi H (1999) Experimental model of small deep infarcts involving the hypothalamus in rats: changes in body temperature and postural reflex. Stroke 30(12):2743–2751, discussion 51. Epub 1999/12/03

    Article  CAS  PubMed  Google Scholar 

  17. van der Staay FJ, Augstein KH, Horvath E (1996) Sensorimotor impairments in rats with cerebral infarction, induced by unilateral occlusion of the left middle cerebral artery: strain differences and effects of the occlusion site. Brain Res 735(2):271–284, Epub 1996/10/07

    Article  PubMed  Google Scholar 

  18. Zarow GJ, Karibe H, States BA, Graham SH, Weinstein PR (1997) Endovascular suture occlusion of the middle cerebral artery in rats: effect of suture insertion distance on cerebral blood flow, infarct distribution and infarct volume. Neurol Res 19(4):409–416, Epub 1997/08/01

    Article  CAS  Google Scholar 

  19. Chen Y, Ito A, Takai K, Saito N (2008) Blocking pterygopalatine arterial blood flow decreases infarct volume variability in a mouse model of intraluminal suture middle cerebral artery occlusion. J Neurosci Methods 174(1):18–24, Epub 2008/07/22

    Article  PubMed  Google Scholar 

  20. Morris GP, Wright AL, Tan RP, Gladbach A, Ittner LM, Vissel B (2016) A Comparative Study of Variables Influencing Ischemic Injury in the Longa and Koizumi Methods of Intraluminal Filament Middle Cerebral Artery Occlusion in Mice. PLoS One 11(2), e0148503, Epub 2016/02/13

    Article  PubMed  PubMed Central  Google Scholar 

  21. McLeod DD, Beard DJ, Parsons MW, Levi CR, Calford MB, Spratt NJ (2013) Inadvertent occlusion of the anterior choroidal artery explains infarct variability in the middle cerebral artery thread occlusion stroke model. PLoS One 8(9), e75779, Epub 2013/09/27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Durukan A, Tatlisumak T (2007) Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 87(1):179–197

    Article  CAS  PubMed  Google Scholar 

  23. Ren Y, Hashimoto M, Pulsinelli WA, Nowak TS Jr (2004) Hypothermic protection in rat focal ischemia models: strain differences and relevance to “reperfusion injury”. J Cereb Blood Flow Metab 24(1):42–53

    Article  PubMed  Google Scholar 

  24. Taninishi H, Jung JY, Izutsu M, Wang Z, Sheng H, Warner DS (2015) A blinded randomized assessment of laser Doppler flowmetry efficacy in standardizing outcome from intraluminal filament MCAO in the rat. J Neurosci Methods 241:111–120, Epub 2014/12/21

    Article  PubMed  Google Scholar 

  25. Head BP, Patel P (2007) Anesthetics and brain protection. Curr Opin Anaesthesiol 20(5):395–399, Epub 2007/09/18

    Article  PubMed  Google Scholar 

  26. Kirsch JR, Traystman RJ, Hurn PD (1996) Anesthetics and cerebroprotection: experimental aspects. Int Anesthesiol Clin 34(4):73–93, Epub 1996/01/01

    Article  CAS  PubMed  Google Scholar 

  27. Macleod MR, Fisher M, O’Collins V, Sena ES, Dirnagl U, Bath PM et al (2009) Good laboratory practice: preventing introduction of bias at the bench. Stroke 40(3):e50–e52

    Article  PubMed  Google Scholar 

  28. Macleod MR, O’Collins T, Horky LL, Howells DW, Donnan GA (2005) Systematic review and metaanalysis of the efficacy of FK506 in experimental stroke. J Cereb Blood Flow Metab 25(6):713–721

    Article  CAS  PubMed  Google Scholar 

  29. Zausinger S, Baethmann A, Schmid-Elsaesser R (2002) Anesthetic methods in rats determine outcome after experimental focal cerebral ischemia: mechanical ventilation is required to obtain controlled experimental conditions. Brain Res Brain Res Protoc 9(2):112–121, Epub 2002/05/30

    Article  CAS  PubMed  Google Scholar 

  30. Reglodi D, Somogyvari-Vigh A, Maderdrut JL, Vigh S, Arimura A (2000) Postischemic spontaneous hyperthermia and its effects in middle cerebral artery occlusion in the rat. Exp Neurol 163(2):399–407, Epub 2000/06/02

    Article  CAS  PubMed  Google Scholar 

  31. Liu F, Schafer DP, McCullough LD (2009) TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods 179(1):1–8, Epub 2009/01/27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fox G, Gallacher D, Shevde S, Loftus J, Swayne G (1993) Anatomic variation of the middle cerebral artery in the Sprague-Dawley rat. Stroke 24(12):2087–2092, discussion 92-3. Epub 1993/12/01

    Article  CAS  PubMed  Google Scholar 

  33. Woitzik J, Schneider UC, Thome C, Schroeck H, Schilling L (2006) Comparison of different intravascular thread occlusion models for experimental stroke in rats. J Neurosci Methods 151(2):224–231

    Article  PubMed  Google Scholar 

  34. Prieto R, Carceller F, Roda JM, Avendano C (2005) The intraluminal thread model revisited: rat strain differences in local cerebral blood flow. Neurol Res 27(1):47–52

    Article  PubMed  Google Scholar 

  35. Bardutzky J, Shen Q, Henninger N, Bouley J, Duong TQ, Fisher M (2005) Differences in ischemic lesion evolution in different rat strains using diffusion and perfusion imaging. Stroke 36(9):2000–2005

    Article  PubMed  PubMed Central  Google Scholar 

  36. Oliff HS, Coyle P, Weber E (1997) Rat strain and vendor differences in collateral anastomoses. J Cereb Blood Flow Metab 17(5):571–576

    Article  CAS  PubMed  Google Scholar 

  37. Oliff HS, Weber E, Eilon G, Marek P (1995) The role of strain/vendor differences on the outcome of focal ischemia induced by intraluminal middle cerebral artery occlusion in the rat. Brain Res 675(1-2):20–26

    Article  CAS  PubMed  Google Scholar 

  38. Oliff HS, Weber E, Miyazaki B, Marek P (1995) Infarct volume varies with rat strain and vendor in focal cerebral ischemia induced by transcranial middle cerebral artery occlusion. Brain Res 699(2):329–331, Epub 1995/11/20

    Article  CAS  PubMed  Google Scholar 

  39. Lourbopoulos A, Karacostas D, Artemis N, Milonas I, Grigoriadis N (2008) Effectiveness of a new modified intraluminal suture for temporary middle cerebral artery occlusion in rats of various weight. J Neurosci Methods 173(2):225–234, Epub 2008/07/19

    Article  PubMed  Google Scholar 

  40. Howells DW, Porritt MJ, Rewell SS, O’Collins V, Sena ES, van der Worp HB et al (2010) Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia. J Cereb Blood Flow Metab 30(8):1412–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. O’Collins VE, Macleod MR, Cox SF, Van Raay L, Aleksoska E, Donnan GA et al (2011) Preclinical drug evaluation for combination therapy in acute stroke using systematic review, meta-analysis, and subsequent experimental testing. J Cereb Blood Flow Metab 31(3):962–975, Epub 2010/10/28

    Article  PubMed  Google Scholar 

  42. Callaway JK, Knight MJ, Watkins DJ, Beart PM, Jarrott B, Delaney PM (2000) A novel, rapid, computerised method for quantitation of neuronal damage in a rat model of stroke. J Neurosci Methods 102(1):53–60

    Article  CAS  PubMed  Google Scholar 

  43. Modo M, Stroemer RP, Tang E, Veizovic T, Sowniski P, Hodges H (2000) Neurological sequelae and long-term behavioural assessment of rats with transient middle cerebral artery occlusion. J Neurosci Methods 104(1):99–109

    Article  CAS  PubMed  Google Scholar 

  44. Porritt MJ, Chen M, Rewell SS, Dean RG, Burrell LM, Howells DW (2010) ACE inhibition reduces infarction in normotensive but not hypertensive rats: correlation with cortical ACE activity. J Cereb Blood Flow Metab 30(8):1520–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rewell SS, Fernandez JA, Cox SF, Spratt NJ, Hogan L, Aleksoska E et al (2010) Inducing stroke in aged, hypertensive, diabetic rats. J Cereb Blood Flow Metab 30(4):729–733, Epub 2010/01/14

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li Y, Zhu S, Yuan L, Lu H, Li H, Tong S (2013) Predicting the ischemic infarct volume at the first minute after occlusion in rodent stroke model by laser speckle imaging of cerebral blood flow. J Biomed Opt 18(7):76024, Epub 2013/07/28

    Article  PubMed  Google Scholar 

  47. Dirnagl U, Kaplan B, Jacewicz M, Pulsinelli W (1989) Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model. J Cereb Blood Flow Metab 9(5):589–596, Epub 1989/10/01

    Article  CAS  PubMed  Google Scholar 

  48. Harada H, Wang Y, Mishima Y, Uehara N, Makaya T, Kano T (2005) A novel method of detecting rCBF with laser-Doppler flowmetry without cranial window through the skull for a MCAO rat model. Brain Res Brain Res Protoc 14(3):165–170

    Article  PubMed  Google Scholar 

  49. Aspey C (1998) Patel, Terruli, Harrison. Middle cerebral artery occlusion in the rat: consistent protocol for a model of stroke. Neuropathol Appl Neurobiol 24(6):487–497

    Article  CAS  PubMed  Google Scholar 

  50. Aspey BS, Taylor FL, Terruli M, Harrison MJG (2000) Temporary middle cerebral artery occlusion in the rat: consistent protocol for a model of stroke and reperfusion. Neuropathol Appl Neurobiol 26(3):232–242

    Article  CAS  PubMed  Google Scholar 

  51. Herz RC, Jonker M, Verheul HB, Hillen B, Versteeg DH, de Wildt DJ (1996) Middle cerebral artery occlusion in Wistar and Fischer-344 rats: functional and morphological assessment of the model. J Cereb Blood Flow Metab 16(2):296–302

    Article  CAS  PubMed  Google Scholar 

  52. Walberer M, Stolz E, Muller C, Friedrich C, Rottger C, Blaes F et al (2006) Experimental stroke: ischaemic lesion volume and oedema formation differ among rat strains (a comparison between Wistar and Sprague-Dawley rats using MRI). Lab Anim 40(1):1–8

    Article  CAS  PubMed  Google Scholar 

  53. Barone FC, Price WJ, White RF, Willette RN, Feuerstein GZ (1992) Genetic hypertension and increased susceptibility to cerebral ischemia. Neurosci Biobehav Rev 16(2):219–233, Epub 1992/01/01

    Article  CAS  PubMed  Google Scholar 

  54. Sauter A, Rudin M (1995) Strain-dependent drug effects in rat middle cerebral artery occlusion model of stroke. J Pharmacol Exp Ther 274(2):1008–1013, Epub 1995/08/01

    CAS  PubMed  Google Scholar 

  55. Kahveci N, Alkan T, Korfali E, Ozluk K (2000) An anatomical and pathological evaluation of middle cerebral artery occlusion in rats. Neurol Res 22(6):609–614

    Article  CAS  PubMed  Google Scholar 

  56. Menzies SA, Hoff JT, Betz AL (1992) Middle cerebral artery occlusion in rats: a neurological and pathological evaluation of a reproducible model. Neurosurgery 31(1):100–106, discussion 6-7

    Article  CAS  PubMed  Google Scholar 

  57. Rubino GJ, Young W (1988) Ischemic cortical lesions after permanent occlusion of individual middle cerebral artery branches in rats. Stroke 19(7):870–877

    Article  CAS  PubMed  Google Scholar 

  58. Coyle P (1984) Diameter and length changes in cerebral collaterals after middle cerebral artery occlusion in the young rat. Anat Rec 210(2):357–364

    Article  CAS  PubMed  Google Scholar 

  59. Coyle P (1985) Interruption of the middle cerebral artery in 10-day-old rat alters normal development of distal collaterals. Anat Rec 212(2):179–182

    Article  CAS  PubMed  Google Scholar 

  60. Coyle P (1986) Different susceptibilities to cerebral infarction in spontaneously hypertensive (SHR) and normotensive Sprague-Dawley rats. Stroke 17(3):520–525

    Article  CAS  PubMed  Google Scholar 

  61. Coyle P (1987) Spatial relations of dorsal anastomoses and lesion border after middle cerebral artery occlusion. Stroke 18(6):1133–1140

    Article  CAS  PubMed  Google Scholar 

  62. Coyle P, Feng X (1993) Risk area and infarct area relations in the hypertensive stroke-prone rat. Stroke 24(5):705–709, discussion 10

    Article  CAS  PubMed  Google Scholar 

  63. Legos JJ, Lenhard SC, Haimbach RE, Schaeffer TR, Bentley RG, McVey MJ et al (2008) SB 234551 selective ET(A) receptor antagonism: perfusion/diffusion MRI used to define treatable stroke model, time to treatment and mechanism of protection. Exp Neurol 212(1):53–62, Epub 2008/05/09

    Article  CAS  PubMed  Google Scholar 

  64. McCabe C, Gallagher L, Gsell W, Graham D, Dominiczak AF, Macrae IM (2009) Differences in the evolution of the ischemic penumbra in stroke-prone spontaneously hypertensive and Wistar-Kyoto rats. Stroke 40(12):3864–3868, Epub 2009/10/03

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yao H, Nabika T (2012) Standards and pitfalls of focal ischemia models in spontaneously hypertensive rats: with a systematic review of recent articles. J Transl Med 10:139, Epub 2012/07/10

    Article  PubMed  PubMed Central  Google Scholar 

  66. Buchan AM, Xue D, Slivka A (1992) A new model of temporary focal neocortical ischemia in the rat. Stroke 23(2):273–279, Epub 1992/02/01

    Article  CAS  PubMed  Google Scholar 

  67. Howells DW, Sena ES, Macleod MR (2014) Bringing rigour to translational medicine. Nat Rev 10(1):37–43, Epub 2013/11/20

    CAS  Google Scholar 

  68. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW (2006) 1,026 experimental treatments in acute stroke. Ann Neurol 59(3):467–477

    Article  PubMed  Google Scholar 

  69. Sena ES, Briscoe CL, Howells DW, Donnan GA, Sandercock PA, Macleod MR (2010) Factors affecting the apparent efficacy and safety of tissue plasminogen activator in thrombotic occlusion models of stroke: systematic review and meta-analysis. J Cereb Blood Flow Metab 30(12):1905–1913, Epub 2010/07/22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Howells DW, Sena ES, O’Collins V, Macleod MR (2012) Improving the efficiency of the development of drugs for stroke. Int J Stroke 7(5):371–377, Epub 2012/06/21

    Article  PubMed  Google Scholar 

  71. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6), e1000412, Epub 2010/07/09

    Article  PubMed  PubMed Central  Google Scholar 

  72. Petullo D, Masonic K, Lincoln C, Wibberley L, Teliska M, Yao DL (1999) Model development and behavioral assessment of focal cerebral ischemia in rats. Life Sci 64(13):1099–1108, Epub 1999/04/21

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Howells .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rewell, S., Howells, D.W. (2017). The Right Rodent for the Job: Infarct Variability Between Strains and Its Impact on Logistics of Experimental Animal Studies. In: Lapchak, P., Zhang, J. (eds) Neuroprotective Therapy for Stroke and Ischemic Disease. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-45345-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45345-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45344-6

  • Online ISBN: 978-3-319-45345-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics