Skip to main content

Learning a Confidence Measure for Real-Time Egomotion Estimation

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9796))

Included in the following conference series:

Abstract

This paper presents a method to generate a meaningful confidence measurement during online real-time egomotion estimation of a vehicle using a monocular camera. This confidence measurement should give the information whether the signal fulfills a certain accuracy range in all parameters or not. For that reason features from an optical flow field incorporating the egomotion error are determined and a confidence measurement is learned using ground truth egomotion data that we obtain from an offline bundle adjustment before. We show that our confidence measurement gives reliable results and can further be used to filter the egomotion estimation using a Kalman filter. Incorporating the knowledge of the egomotion accuracy determined by the confidence we are able to update the confidence measure for the filtered results. This leads to an improved system availability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, A., Chellappa, R.: Robust ego-motion estimation and 3-D model refinement using surface parallax. IEEE Trans. Image Process. 15(5), 1215–1225 (2006)

    Article  Google Scholar 

  2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM (1992)

    Google Scholar 

  3. Bouguet, J.Y.: Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm. Intel Corporation 5, 1–10 (2001)

    Google Scholar 

  4. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: 20th International Conference on Pattern Recognition (ICPR), pp. 3121–3124. IEEE (2010)

    Google Scholar 

  5. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

  6. Chen, Y.W., Lin, C.J.: Combining SVMs with various feature selection strategies. In: Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L.A. (eds.) Feature Extraction, pp. 315–324. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  8. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  9. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  10. Goecke, R., Asthana, A., Pettersson, N., Petersson, L.: Visual vehicle egomotion estimation using the fourier-mellin transform. In: 2007 IEEE Intelligent Vehicles Symposium, pp. 450–455. IEEE (2007)

    Google Scholar 

  11. Guo, G., Fu, Y., Dyer, C.R., Huang, T.S.: Head pose estimation: classification or regression?. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE (2008)

    Google Scholar 

  12. Haeusler, R., Nair, R., Kondermann, D.: Ensemble learning for confidence measures in stereo vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 305–312 (2013)

    Google Scholar 

  13. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518

    Google Scholar 

  14. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35(1), 73–101 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jaegle, A., Phillips, S., Daniilidis, K.: Fast, robust, continuous monocular egomotion computation. arXiv preprint (2016). arXiv:1602.04886

  16. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82(Series D), 35–45 (1960)

    Article  Google Scholar 

  17. Kondermann, C., Kondermann, D., Jähne, B., Garbe, C.S.: An adaptive confidence measure for optical flows based on linear subspace projections. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 132–141. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Lessmann, S., Siegemund, J., Meuter, M., Westerhoff, J., Pauli, J.: Improving robustness for real-time vehicle egomotion estimation. In: Intelligent Vehicles Symposium (2016)

    Google Scholar 

  19. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944). JSTOR

    MathSciNet  MATH  Google Scholar 

  20. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  21. Motten, A., Claesen, L., Pan, Y.: Binary confidence evaluation for a stereo vision based depth field processor SoC. In: 2011 First Asian Conference on Pattern Recognition (ACPR), pp. 456–460. IEEE (2011)

    Google Scholar 

  22. Musleh, B., Martin, D., de la Escalera, A., Guinea, D.M., Garcia-Alegre, M.C.: Estimation and prediction of the vehicle’s motion based on visual odometry and Kalman filter. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P., Zemčík, P. (eds.) ACIVS 2012. LNCS, vol. 7517, pp. 491–502. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Neufeld, A., Berger, J., Becker, F., Lenzen, F., Schnörr, C.: Estimating vehicle ego-motion and piecewise planar scene structure from optical flow in a continuous framework. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 41–52. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24947-6_4

    Chapter  Google Scholar 

  24. Pink, O., Moosmann, F., Bachmann, A.: Visual features for vehicle localization and ego-motion estimation. In: 2009 IEEE Intelligent Vehicles Symposium, pp. 254–260. IEEE (2009)

    Google Scholar 

  25. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. In: ACM transactions on graphics (TOG), vol. 25, pp. 835–846. ACM (2006)

    Google Scholar 

  26. Society of Automotive Engineers. Vehicle Dynamics Committee: Vehicle Dynamics Terminology: SAE J670e: Report of Vehicle Dynamics Committee Approved July 1952 and Last Revised July 1976. Handbook supplement, Society of Automotive Engineers (1978)

    Google Scholar 

  27. Stein, G.P., Mano, O., Shashua, A.: A robust method for computing vehicle ego-motion. In: Proceedings of the IEEE Intelligent Vehicles Symposium, IV 2000, pp. 362–368. IEEE (2000)

    Google Scholar 

  28. Torr, P.H., Zisserman, A.: MLESAC: a new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 78(1), 138–156 (2000)

    Article  Google Scholar 

  29. Vapnik, V.N., Vapnik, V.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)

    MATH  Google Scholar 

  30. Weydert, M.: Model-based ego-motion and vehicle parameter estimation using visual odometry. In: 2012 16th IEEE Mediterranean Electrotechnical Conference (MELECON), pp. 914–919. IEEE (2012)

    Google Scholar 

  31. Yamaguchi, K., Kato, T., Ninomiya, Y.: Vehicle ego-motion estimation and moving object detection using a monocular camera. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 4, pp. 610–613. IEEE (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Lessmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Lessmann, S., Westerhoff, J., Meuter, M., Pauli, J. (2016). Learning a Confidence Measure for Real-Time Egomotion Estimation. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45886-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45885-4

  • Online ISBN: 978-3-319-45886-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics