Skip to main content

FSI Schemes: Fast Semi-Iterative Solvers for PDEs and Optimisation Methods

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9796))

Included in the following conference series:

Abstract

Many tasks in image processing and computer vision are modelled by diffusion processes, variational formulations, or constrained optimisation problems. Basic iterative solvers such as explicit schemes, Richardson iterations, or projected gradient descent methods are simple to implement and well-suited for parallel computing. However, their efficiency suffers from severe step size restrictions. As a remedy we introduce a simple and highly efficient acceleration strategy, leading to so-called Fast Semi-Iterative (FSI) schemes that extrapolate the basic solver iteration with the previous iterate. To derive suitable extrapolation parameters, we establish a recursion relation that connects box filtering with an explicit scheme for 1D homogeneous diffusion. FSI schemes avoid the main drawbacks of recent Fast Explicit Diffusion (FED) and Fast Jacobi techniques, and they have an interesting connection to the heavy ball method in optimisation. Our experiments show their benefits for anisotropic diffusion inpainting, nonsmooth regularisation, and Nesterov’s worst case problems for convex and strongly convex optimisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Prob. 10, 1217–1229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertero, M., Poggio, T.A., Torre, V.: Ill-posed problems in early vision. Proc. IEEE 76(8), 869–889 (1988)

    Article  Google Scholar 

  3. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89–97 (2004)

    MathSciNet  Google Scholar 

  4. Gentzsch, W., Schlüter, A.: Über ein Einschrittverfahren mit zyklischer Schrittweitenänderung zur Lösung parabolischer Differentialgleichungen. Zeitschrift für Angewandte Mathematik und Mechanik 58, T415–T416 (1978). in German

    MATH  Google Scholar 

  5. Golub, G.H., Varga, R.S.: Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods. Part I. Numerische Mathematik 3(1), 147–156 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hellwig, G.: Partial Differential Equations. Teubner, Stuttgart (1977)

    MATH  Google Scholar 

  7. van der Houwen, P.J., Sommeijer, B.P.: On the internal stability of explicit, m-stage Runge-Kutta methods for large m-values. Zeitschrift für Angewandte Mathematik und Mechanik 60(10), 479–485 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bull. Electrotech. Lab. 26, 368–388 (1962). in Japanese

    Google Scholar 

  9. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, Applied Optimization, vol. 87. Kluwer, Boston (2004)

    MATH  Google Scholar 

  10. Ochs, P., Brox, T., Pock, T.: iPiasco: inertial proximal algorithm for strongly convex optimization. J. Math. Imaging Vis. 53(2), 171–181 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  12. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964)

    Article  Google Scholar 

  13. Richardson, L.F.: The approximate arithmetical solution by finite differences of physical problems involving differential equation, with an application to the stresses in a masonry dam. Philos. Trans. R. Soc. A 210, 307–357 (1911)

    Article  MATH  Google Scholar 

  14. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation, chap. 8. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  16. Saul’yev, V.K.: Integration of Equations of Parabolic Type by the Method of Nets. Elsevier, Pergamon, Oxford (1964)

    MATH  Google Scholar 

  17. Setzer, S., Steidl, G., Morgenthaler, J.: A cyclic projected gradient method. Comput. Optim. Appl. 54(2), 417–440 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: Proceedings of 30th International Conference on Machine Learning, pp. 1139–1147. Atlanta, GA, June 2013

    Google Scholar 

  19. Varga, R.S.: A comparison of the successive overrelaxation method and semi-iterative methods using Chebyshev polynomials. J. Soc. Ind. Appl. Math. 5(2), 39–46 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  20. Weickert, J.: Theoretical foundations of anisotropic diffusion in image processing. Comput. Suppl. 11, 221–236 (1996)

    Article  Google Scholar 

  21. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  22. Weickert, J., Grewenig, S., Schroers, C., Bruhn, A.: Cyclic schemes for PDE-based image analysis. Int. J. Comput. Vis. 118(3), 275–299 (2016)

    Article  MathSciNet  Google Scholar 

  23. Wells, W.M.: Efficient synthesis of Gaussian filters by cascaded uniform filters. IEEE Trans. Pattern Anal. Mach. Intell. 8(2), 234–239 (1986)

    Article  Google Scholar 

  24. Young, D.M.: On Richardson’s method for solving linear systems with positive definite matrices. J. Math. Phys. 32(1), 243–255 (1954)

    MATH  Google Scholar 

  25. Chzhao-Din, Y.: Some difference schemes for the solution of the first boundary value problem for linear differential equations with partial derivatives. Ph.D. thesis, Moscow State University (1958). in Russian

    Google Scholar 

Download references

Acknowledgements

Our research has been partially funded by the Deutsche Forschungsgemeinschaft (DFG) through a Gottfried Wilhelm Leibniz Prize for Joachim Weickert and by the Graduate School of Computer Science at Saarland University. This is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hafner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Hafner, D., Ochs, P., Weickert, J., Reißel, M., Grewenig, S. (2016). FSI Schemes: Fast Semi-Iterative Solvers for PDEs and Optimisation Methods. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45886-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45885-4

  • Online ISBN: 978-3-319-45886-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics