Skip to main content

Automated Segmentation of Immunostained Cell Nuclei in 3D Ultramicroscopy Images

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9796))

Included in the following conference series:

Abstract

Detection, segmentation, and quantification of individual cell nuclei is a standard task in biomedical applications. Due to the increasing volume of acquired image data, it is not possible to rely on manual labeling and object counting. Instead, automated image processing methods have to be applied. Especially in three-dimensional data, one of the major challenges is the separation of touching cell nuclei in densely packed clusters. In this paper, we propose a method for automated detection and segmentation of immunostained cell nuclei in ultramicroscopy images. Our algorithm utilizes interactive learning and voxel classification to obtain a foreground segmentation and subsequently performs the splitting process for each cluster using a multi-step watershed approach. We have evaluated our results using reference images manually labeled by domain experts and compare our approach to state-of-the art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The FARSight toolkit. http://www.farsight-toolkit.org

  2. Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B.: Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans. Biomed. Eng. 57(4), 841–852 (2010)

    Article  Google Scholar 

  3. Bergeest, J.P., Rohr, K.: Segmentation of cell nuclei in 3D microscopy images based on level set deformable models and convex minimization. In: 11th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 637–640 (2014)

    Google Scholar 

  4. Daněk, O., Matula, P., Ortiz-de-Solórzano, C., Muñoz-Barrutia, A., Maška, M., Kozubek, M.: Segmentation of touching cell nuclei using a two-stage graph cut model. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 410–419. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Fehr, J., Ronneberger, O., Kurz, H., Burkhardt, H.: Self-learning segmentation and classification of cell-nuclei in 3D volumetric data using voxel-wise gray scale invariants. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 377–384. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Gertych, A., Ma, Z., Tajbakhsh, J., Velásquez-Vacca, A., Knudsen, B.S.: Rapid 3-D delineation of cell nuclei for high-content screening platforms. Comput. Biol. Med. 69, 328–338 (2016)

    Article  Google Scholar 

  8. Harder, N., Bodnar, M., Eils, R., Spector, D.L., Rohr, K.: 3D segmentation and quantification of mouse embryonic stem cells in fluorescence microscopy images. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 216–219 (2011)

    Google Scholar 

  9. Indhumathi, C., Cai, Y., Guan, Y., Opas, M.: An automatic segmentation algorithm for 3D cell cluster splitting using volumetric confocal images. J. Microsc. 243(1), 60–76 (2011)

    Article  Google Scholar 

  10. Lin, G., Adiga, U., Olson, K., Guzowski, J.F., Barnes, C.A., Roysam, B.: A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry Part A 56(1), 23–36 (2003)

    Article  Google Scholar 

  11. Mathew, B., Schmitz, A., Muñoz-Descalzo, S., Ansari, N., Pampaloni, F., Stelzer, E., Fischer, S.: Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with lines-of-sight decomposition. BMC Bioinform. 16(1), 1–14 (2015)

    Article  Google Scholar 

  12. Mertz, J.: Optical sectioning microscopy with planar or structured illumination. Nat. Methods 8(10), 811–819 (2011)

    Article  Google Scholar 

  13. Meyer-Spradow, J., Ropinski, T., Mensmann, J., Hinrichs, K.H.: Voreen: a rapid-prototyping environment for ray-casting-based volume visualizations. IEEE Comput. Graphics Appl. (Appl. Dept.) 29(6), 6–13 (2009)

    Article  Google Scholar 

  14. Ollion, J., Cochennec, J., Loll, F., Escudé, C., Boudier, T.: TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 29(14), 1840–1841 (2013)

    Article  Google Scholar 

  15. Osma-Ruiz, V., Godino-Llorente, J.I., Sáenz-Lechón, N., Gómez-Vilda, P.: An improved watershed algorithm based on efficient computation of shortest paths. Pattern Recogn. 40(3), 1078–1090 (2007)

    Article  MATH  Google Scholar 

  16. Qi, J.: Dense nuclei segmentation based on graph cut and convexity-concavity analysis. J. Microsc. 253(1), 42–53 (2014)

    Article  Google Scholar 

  17. Reynaud, E.G., Peychl, J., Huisken, J., Tomancak, P.: Guide to light-sheet microscopy for adventurous biologists. Nat. Methods 12(1), 30–34 (2015)

    Article  Google Scholar 

  18. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012)

    Article  Google Scholar 

  19. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–168 (2004)

    Article  Google Scholar 

  20. Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  21. Sommer, C., Straehle, C.N., Köthe, U., Hamprecht, F.A.: Ilastik: interactive learning and segmentation toolkit. In: 8th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 230–233. IEEE (2011)

    Google Scholar 

  22. Stelzer, E.H.K.: Light-sheet fluorescence microscopy for quantitative biology. Nat. Methods 12(1), 23–26 (2015)

    Article  MathSciNet  Google Scholar 

  23. Tek, F.B., Kroeger, T., Mikula, S., Hamprecht, F.A.: Automated cell nucleus detection for large-volume electron microscopy of neural tissue. In: 11th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 69–72 (2014)

    Google Scholar 

  24. Wählby, C., Sintorn, I.M., Erlandsson, F., Borgefors, G., Bengtsson, E.: Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J. Microsc. 215(1), 67–76 (2004)

    Article  MathSciNet  Google Scholar 

  25. Wienert, S., Heim, D., Saeger, K., Stenzinger, A., Beil, M., Hufnagl, P., Dietel, M., Denkert, C., Klauschen, F.: Dense nuclei segmentation based on graph cut and convexity-concavity analysis. Sci. Rep. 2, 503–510 (2012)

    Article  Google Scholar 

  26. Yokomizo, T., Yamada-Inagawa, T., Yzaguirre, A.D., Chen, M.J., Speck, N.A., Dzierzak, E.: Whole-mount three-dimensional imaging of internally localized immunostained cells within mouse embryos. Nat. Protoc. 7(3), 421–431 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partly supported by the Deutsche Forschungsgemeinschaft, CRC 656 “Cardiovascular Molecular Imaging”. The images in this paper have been rendered using the framework Voreen [13].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Scherzinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Scherzinger, A., Kleene, F., Dierkes, C., Kiefer, F., Hinrichs, K.H., Jiang, X. (2016). Automated Segmentation of Immunostained Cell Nuclei in 3D Ultramicroscopy Images. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45886-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45885-4

  • Online ISBN: 978-3-319-45886-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics