Skip to main content

TWSVM for Unsupervised and Semi-supervised Learning

  • Chapter
  • First Online:
Twin Support Vector Machines

Part of the book series: Studies in Computational Intelligence ((SCI,volume 659))

Abstract

Semi-supervised learning falls between unsupervised learning (with no labeled information of training data) and supervised learning (with completely labeled training data). Recent researches in machine-learning has shown that unlabeled data, when used in conjunction with a small amount of labeled data, can produce considerable improvement in learning accuracy. This chapter discusses twin support vector machine based algorithms for unsupervised and semi-supervised framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. The Journal of Machine Learning Research, 7, 2399–2434.

    MathSciNet  MATH  Google Scholar 

  2. Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In Proceedings of the Eleventh Annual Conference on Computational Learning Theory (pp. 92–100).

    Google Scholar 

  3. Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (2000). Text classification from labeled and unlabeled documents using em. Machine learning, 39(2–3), 103–134.

    Article  MATH  Google Scholar 

  4. Melacci, S., & Belkin, M. (2011). Laplacian support vector machines trained in the primal. The Journal of Machine Learning Research, 12, 1149–1184.

    MathSciNet  MATH  Google Scholar 

  5. Zhu, X. (2008). Semi-supervised learning literature survey, Computer Science TR (150). Madison: University of wisconsin.

    Google Scholar 

  6. Jayadeva, Khemchandani. R., & Chandra, S. (2007). Twin support vector machines for pattern classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(5), 905–910.

    Google Scholar 

  7. Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural processing letters, 9(3), 293–300.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kumar, M. A., & Gopal, M. (2009). Least squares twin support vector machines for pattern classification. Expert Systems and its Applications, 36(4), 7535–7543.

    Article  Google Scholar 

  9. Zhang, Z., Zhen, L., Deng, N., & Tan, J. (2014). Sparse least square twin support vector machine with adaptive norm. Applied Intelligence, 41, 1097–1107.

    Article  Google Scholar 

  10. Qi, Z., Tian, Y., & Shi, Y. (2012). Laplacian twin support vector machine for semi-supervised classification. Neural Networks, 35, 46–53.

    Article  MATH  Google Scholar 

  11. Chen, W. J., Shao, Y. H., Deng, N. Y., & Feng, Z. L. (2014). Laplacian least squares twin support vector machine for semi-supervised classification. Neurocomputing, 145, 465–476.

    Article  Google Scholar 

  12. Fung, G., & Mangasarian, O. L. (2001). Proximal support vector machine classifiers. In, F. Provost and R. Srikant (Eds.) Proceedings of Seventh International Conference on Knowledge Discovery and Data Mining, 77–86

    Google Scholar 

  13. Khemchandani, R., & Pal, A. (2016). Multicategory laplacian twin support vector machines. Applied Intelligence (To appear)

    Google Scholar 

  14. Anderberg, M. (1973). Cluster Analysis for Applications. New York: Academic Press.

    MATH  Google Scholar 

  15. Jain, A., Murty, M., & Flynn, P. (1999). Data clustering: a review. ACM Computing Surveys (CSUR), 31(3), 264–323.

    Article  Google Scholar 

  16. Aldenderfer, M., & Blashfield, R. (1985). Cluster Analysis. Los Angeles: Sage.

    MATH  Google Scholar 

  17. QiMin, C., Qiao, G., Yongliang, W., & Xianghua, W. (2015). Text clustering using VSM with feature clusters. Neural Computing and Applications, 26(4), 995–1003.

    Article  Google Scholar 

  18. Zhan, Y., Yin, J., & Liu, X. (2013). Nonlinear discriminant clustering based on spectral regularization. Neural Computing and Applications, 22(7–8), 1599–1608.

    Article  Google Scholar 

  19. Tu, E., Cao, L., Yang, J., & Kasabov, N. (2014). A novel graph-based k-means for nonlinear manifold clustering and representative selection. Neurocomputing, 143, 109–122.

    Article  Google Scholar 

  20. Liu, X., & Li, M. (2014). Integrated constraint based clustering algorithm for high dimensional data. Neurocomputing, 142, 478–485.

    Article  Google Scholar 

  21. Bradley, P., & Mangasarian, O. (1997). Clustering via concave minimization. Advances in Neural Information Processing Systems, 9, 368–374.

    Google Scholar 

  22. Bradley, P., & Mangasarian, O. (2000). K-plane clustering. Journal of Global Optimization, 16(1), 23–32.

    Article  MathSciNet  MATH  Google Scholar 

  23. Shao, Y., Bai, L., Wang, Z., Hua, X., & Deng, N. (2013). Proximal plane clustering via eigenvalues. Procedia Computer Science, 17, 41–47.

    Article  Google Scholar 

  24. Yang, Z., Guo, Y., Li, C., & Shao, Y. (2014). Local k-proximal plane clustering. Neural Computing and Applications, 26(1), 199–211.

    Article  Google Scholar 

  25. Wang, Z., Shao, Y., Bai, L., & Deng, N. (2014). Twin support vector machine for clustering. IEEE Transactions on Neural Networks and Learning Systems,. doi:10.1109/TNNLS.2014.2379930.

    MathSciNet  Google Scholar 

  26. Yuille, A. L., & Rangarajan, A. (2002). The concave-convex procedure (CCCP) (Vol. 2)., Advances in Neural Information Processing Systems Cambridge: MIT Press.

    MATH  Google Scholar 

  27. Khemchandani, R., & Pal, A. Fuzzy least squares twin support vector clustering. Neural Computing and its Applications (To appear)

    Google Scholar 

  28. Golub, G. H., & Van Loan, C. F. (1996). Matrix computations (3rd ed.). Baltimore: John Hopkins University Press.

    MATH  Google Scholar 

  29. Blake, C. L., & Merz, C. J. UCI Repository for Machine Learning Databases, Irvine, CA: University of California, Department of Information and Computer Sciences. http://www.ics.uci.edu/~mlearn/MLRepository.html.

  30. Arbelaez, P., Fowlkes, C., & Martin, D. (2007). The Berkeley Segmentation Dataset and Benchmark. http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds.

  31. Mehrkanoon, S., Alzate, C., Mall, R., Langone, R., & Suykens, J. (2015). Multiclass semisupervised learning based upon kernel spectral clustering. IEEE Transactions on Neural Networks and Learning Systems, 26(4), 720–733.

    Article  MathSciNet  Google Scholar 

  32. Wang, X. Y., Wang, T., & Bu, J. (2011). Color image segmentation using pixel wise support vector machine classification. Pattern Recognition, 44(4), 777–787.

    Article  MATH  Google Scholar 

  33. Duda, R., Hart, P., & Stork, D. (2001). Pattern classification. New York: Wiley.

    MATH  Google Scholar 

  34. Keller, J. M., Gray, M. R., & Givens, J. A. (1985). A fuzzy k-nearest neighbor algorithm. IEEE Transactions on Systems, Man and Cybernetics, 4, 580–585.

    Article  Google Scholar 

  35. Hausdorff, F. (1927). Mengenlehre. Berlin: Walter de Gruyter.

    MATH  Google Scholar 

  36. Sartakhti, J. S., Ghadiri, N., & Afrabandpey, H. (2015). Fuzzy least squares twin support vector machines. arXiv preprint arXiv:1505.05451.

  37. Wang, X., Wang, Y., & Wang, L. (2004). Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recognition Letters, 25, 1123–1132.

    Article  Google Scholar 

  38. Manjunath, B. S., & Ma, W. Y. (1996). Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 837–842.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reshma Khemchandani .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jayadeva, Khemchandani, R., Chandra, S. (2017). TWSVM for Unsupervised and Semi-supervised Learning. In: Twin Support Vector Machines. Studies in Computational Intelligence, vol 659. Springer, Cham. https://doi.org/10.1007/978-3-319-46186-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46186-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46184-7

  • Online ISBN: 978-3-319-46186-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics