Skip to main content

A Lower Bound Analysis of Population-Based Evolutionary Algorithms for Pseudo-Boolean Functions

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2016 (IDEAL 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9937))

Abstract

Evolutionary algorithms (EAs) are population-based general-purpose optimization algorithms, and have been successfully applied in real-world optimization tasks. However, previous theoretical studies often employ EAs with only a parent or offspring population and focus on specific problems. Furthermore, they often only show upper bounds on the running time, while lower bounds are also necessary to get a complete understanding of an algorithm. In this paper, we analyze the running time of the (\(\mu +\lambda \))-EA (a general population-based EA with mutation only) on the class of pseudo-Boolean functions with a unique global optimum. By applying the recently proposed switch analysis approach, we prove the lower bound \(\varOmega (n \ln n\,+\,\mu \,+\,\lambda n\ln \ln n/ \ln n)\) for the first time. Particularly on the two widely-studied problems, OneMax and LeadingOnes, the derived lower bound reveals that the (\(\mu +\lambda \))-EA will be slower than the (1 + 1)-EA when the population size \(\mu \) or \(\lambda \) is above a moderate order. Our results imply that the increase of population size, while usually desired in practice, bears the risk of increasing the lower bound of the running time and thus should be carefully considered.

This work was supported by the NSFC (61333014, 61375061), the Jiangsu Science Foundation (BK20160066), the Fundamental Research Funds for the Central Universities (WK2150110002), the 2015 Microsoft Research Asia Collaborative Research Program, and the Collaborative Innovation Center of Novel Software Technology and Industrialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and Recent Developments. World Scientific, Singapore (2011)

    Book  MATH  Google Scholar 

  2. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  3. Chen, T., He, J., Chen, G., Yao, X.: Choosing selection pressure for wide-gap problems. Theor. Comput. Sci. 411(6), 926–934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, T., He, J., Sun, G., Chen, G., Yao, X.: A new approach for analyzing average time complexity of population-based evolutionary algorithms on unimodal problems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(5), 1092–1106 (2009)

    Article  Google Scholar 

  5. Chen, T., Tang, K., Chen, G., Yao, X.: A large population size can be unhelpful in evolutionary algorithms. Theor. Comput. Sci. 436(8), 54–70 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Doerr, B., Künnemann, M.: Optimizing linear functions with the (\(1+\lambda \)) evolutionary algorithm - different asymptotic runtimes for different instances. Theor. Comput. Sci. 561, 3–23 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (\(1+1\)) evolutionary algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, New York (2006)

    MATH  Google Scholar 

  9. Freǐdlin, M.: Markov Processes and Differential Equations: Asymptotic Problems. Birkhäuser, Basel (1996)

    Book  MATH  Google Scholar 

  10. Gießen, C., Witt, C.: Population size vs. mutation strength for the (1+\(\lambda \)) EA on OneMax. In: Proceedings of GECCO 2015, Madrid, Spain, pp. 1439–1446 (2015)

    Google Scholar 

  11. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 127(1), 57–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, J., Yao, X.: From an individual to a population: an analysis of the first hitting time of population-based evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 495–511 (2002)

    Article  Google Scholar 

  13. Jansen, T., Wegener, I.: On the utility of populations in evolutionary algorithms. In: Proceedings of GECCO 2001, San Francisco, CA, pp. 1034–1041 (2001)

    Google Scholar 

  14. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64(4), 623–642 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lehre, P.K., Yao, X.: On the impact of mutation-selection balance on the runtime of evolutionary algorithms. IEEE Trans. Evol. Comput. 16(2), 225–241 (2012)

    Article  Google Scholar 

  16. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization: Algorithms and Their Computational Complexity. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  17. Storch, T.: On the choice of the parent population size. Evol. Comput. 16(4), 557–578 (2008)

    Article  Google Scholar 

  18. Sudholt, D.: A new method for lower bounds on the running time of evolutionary algorithms. IEEE Trans. Evol. Comput. 17(3), 418–435 (2013)

    Article  Google Scholar 

  19. Witt, C.: Runtime analysis of the (\(\mu +1\)) EA on simple pseudo-Boolean functions. Evol. Comput. 14(1), 65–86 (2006)

    Google Scholar 

  20. Witt, C.: Population size versus runtime of a simple evolutionary algorithm. Theor. Comput. Sci. 403(1), 104–120 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu, Y., Qian, C., Zhou, Z.H.: Switch analysis for running time analysis of evolutionary algorithms. IEEE Trans. Evol. Comput. 19(6), 777–792 (2015)

    Article  Google Scholar 

  22. Yu, Y., Zhou, Z.H.: A new approach to estimating the expected first hitting time of evolutionary algorithms. Artif. Intell. 172(15), 1809–1832 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yu, Y., Qian, C.: Running time analysis: convergence-based analysis reduces to switch analysis. In: Proceedings of CEC 2015, Sendai, Japan, pp. 2603–2610 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Qian, C., Yu, Y., Zhou, ZH. (2016). A Lower Bound Analysis of Population-Based Evolutionary Algorithms for Pseudo-Boolean Functions. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2016. IDEAL 2016. Lecture Notes in Computer Science(), vol 9937. Springer, Cham. https://doi.org/10.1007/978-3-319-46257-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46257-8_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46256-1

  • Online ISBN: 978-3-319-46257-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics