Skip to main content

Using Metabolomic Approaches to Characterize the Human Pathogen Leishmania in Macrophages

  • Chapter
  • First Online:
Microbial Metabolomics

Abstract

Leishmania are sandfly-transmitted protozoan parasites that cause a spectrum of diseases ranging from self-healing cutaneous to lethal visceral infections that affect more than 12 million people worldwide. Leishmania alternate between extracellular promastigote stages in the mid-gut of the sandfly and an obligate intracellular amastigote stage that targets macrophages and other monocytes in the mammalian host, residing within the phagolysosome compartment. Each of these stages appear to be well adapted to dealing with a plethora of antimicrobial processes in these diverse host niches, as well as salvaging and utilizing different carbon sources and essential nutrients. Recent studies have highlighted marked differences in the metabolism of these life-cycle stages which appear to be important for transmission and/or persistence and virulence in the mammalian host. This information is crucial for guiding the development of new therapies. In this chapter, we review our current understanding of Leishmania metabolism and what role ‘-omics’ approaches have played in advancing our understanding. We highlight the role of metabolomic approaches to reveal the mode of action of antileishmanial drugs and to obtain new insights into the activity of metabolic pathways and the physiological state of Leishmania life-cycle stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alawieh A et al (2014) Revisiting leishmaniasis in the time of war: the Syrian conflict and the Lebanese outbreak. Int J Infect Dis 29:115–119

    Article  PubMed  Google Scholar 

  • Ali KS, Rees RC, Terrell-Nield C, Ali SA (2013) Virulence loss and amastigote transformation failure determine host cell responses to Leishmania mexicana. Parasite Immunol 35(12):441–456

    Article  CAS  PubMed  Google Scholar 

  • Alvar J et al (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7(5):e35671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaral V, Pirmez C, Goncalves A, Ferreira V, Grimaldi G Jr (2000) Cell populations in lesions of cutaneous leishmaniasis of Leishmania (L.) amazonensis—infected rhesus macaques, Macaca mulatta. Mem Inst Oswaldo Cruz 95(2):209–216

    Google Scholar 

  • Andrews KT, Fisher G, Skinner-Adams TS (2014) Drug repurposing and human parasitic protozoan diseases. Int J Parasitol Drugs Drug Resist 4(2):95–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Anjili C et al (2006) Estimation of the minimum number of Leishmania major amastigotes required for infecting Phlebotomus duboscqi (Diptera: Psychodidae). East Afr Med J 83(2):68–71

    CAS  PubMed  Google Scholar 

  • Antoniewicz MR, Kelleher JK, Stephanopoulos G (2011) Measuring deuterium enrichment of glucose hydrogen atoms by gas chromatography/mass spectrometry. Anal Chem 83(8):3211–3216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arjmand M et al (2016) Metabolomics-based study of logarithmic and stationary phases of promastigotes in Leishmania major by 1H NMR spectroscopy. Iran Biomed J 20(2):77–83

    PubMed  PubMed Central  Google Scholar 

  • Ashutosh Sundar S, Goyal N (2007) Molecular mechanisms of antimony resistance in Leishmania. J Med Microbiol 56(Pt 2):143–153

    Article  CAS  PubMed  Google Scholar 

  • Bakker BM et al (2000) Compartmentation protects Trypanosomes from the dangerous design of glycolysis. Proc Natl Acad Sci USA 97(5):2087–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barhoumi M, Tanner NK, Banroques J, Linder P, Guizani I (2006) Leishmania infantum LeIF protein is an ATP-dependent RNA helicase and an eIF4A-like factor that inhibits translation in yeast. FEBS J 273(22):5086–5100

    Article  CAS  PubMed  Google Scholar 

  • Bates PA (2007) Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol 37(10):1097–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beach R, Kiilu G, Hendricks L, Oster C, Leeuwenburg J (1984) Cutaneous leishmaniasis in Kenya: transmission of Leishmania major to man by the bite of a naturally infected Phlebotomus duboscqi. Trans R Soc Trop Med Hyg 78(6):747–751

    Article  CAS  PubMed  Google Scholar 

  • Beach R, Kiilu G, Leeuwenburg J (1985) Modification of sand fly biting behavior by Leishmania leads to increased parasite transmission. Am J Trop Med Hyg 34(2):278–282

    CAS  PubMed  Google Scholar 

  • Bente M et al (2003) Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. Proteomics 3(9):1811–1829

    Article  CAS  PubMed  Google Scholar 

  • Berg M et al (2015) Experimental resistance to drug combinations in Leishmania donovani: metabolic and phenotypic adaptations. Antimicrob Agents Chemother 59(4):2242–2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg M et al (2013) Metabolic adaptations of Leishmania donovani in relation to differentiation, drug resistance, and drug pressure. Mol Microbiol 90(2):428–442

    CAS  PubMed  Google Scholar 

  • Berry D et al (2015) Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci USA 112(2):E194–E203

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya A, Biswas A, Das PK (2008) Role of intracellular cAMP in differentiation-coupled induction of resistance against oxidative damage in Leishmania donovani. Free Radic Biol Med 44(5):779–794

    Article  CAS  PubMed  Google Scholar 

  • Blattner J, Helfert S, Michels P, Clayton C (1998) Compartmentation of phosphoglycerate kinase in Trypanosoma brucei plays a critical role in parasite energy metabolism. Proc Natl Acad Sci USA 95(20):11596–11600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchard P et al (1982) Diabetes mellitus following pentamidine-induced hypoglycemia in humans. Diabetes 31(1):40–45

    Article  CAS  PubMed  Google Scholar 

  • Bumann D (2015) Heterogeneous host-pathogen encounters: act locally, think globally. Cell Host Microbe 17(1):13–19

    Article  CAS  PubMed  Google Scholar 

  • Burchmore RJ et al (2003) Genetic characterization of glucose transporter function in Leishmania mexicana. Proc Natl Acad Sci USA 100(7):3901–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busch R et al (2006) Measurement of protein turnover rates by heavy water labeling of nonessential amino acids. Biochim Biophys Acta 1760(5):730–744

    Article  CAS  PubMed  Google Scholar 

  • Busch R, Neese RA, Awada M, Hayes GM, Hellerstein MK (2007) Measurement of cell proliferation by heavy water labeling. Nat Protoc 2(12):3045–3057

    Article  CAS  PubMed  Google Scholar 

  • Canuto GA et al (2012) CE-ESI-MS metabolic fingerprinting of Leishmania resistance to antimony treatment. Electrophoresis 33(12):1901–1910

    Article  CAS  PubMed  Google Scholar 

  • Canuto GA et al (2014) Multi-analytical platform metabolomic approach to study miltefosine mechanism of action and resistance in Leishmania. Anal Bioanal Chem 406(14):3459–3476

    Article  CAS  PubMed  Google Scholar 

  • Carvalho FA et al (2002) Diagnosis of American visceral leishmaniasis in humans and dogs using the recombinant Leishmania donovani A2 antigen. Diagn Microbiol Infect Dis 43(4):289–295

    Article  CAS  PubMed  Google Scholar 

  • Castilho-Martins EA et al (2015) Capillary electrophoresis reveals polyamine metabolism modulation in Leishmania (Leishmania) amazonensis wild type and arginase knockout mutants under arginine starvation. Electrophoresis 36:2314–2323

    Article  CAS  Google Scholar 

  • Castilla JJ, Sanchez-Moreno M, Mesa C, Osuna A (1995) Leishmania donovani: in vitro culture and [1H] NMR characterization of amastigote-like forms. Mol Cell Biochem 142(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Cayla M et al (2014) Transgenic analysis of the Leishmania MAP kinase MPK10 reveals an auto-inhibitory mechanism crucial for stage-regulated activity and parasite viability. PLoS Pathog 10(9):e1004347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chakravarty J, Sundar S (2010) Drug resistance in leishmaniasis. J Glob Infect Dis 2(2):167–176

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang KP, Fong D (1983) Cell biology of host-parasite membrane interactions in leishmaniasis. Ciba Found Symp 99:113–137

    CAS  PubMed  Google Scholar 

  • Chavali AK et al (2012) Metabolic network analysis predicts efficacy of FDA-approved drugs targeting the causative agent of a neglected tropical disease. BMC Syst Biol 6:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavali AK, Whittemore JD, Eddy JA, Williams KT, Papin JA (2008) Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol 4:177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cloutier S et al (2012) Translational control through eIF2alpha phosphorylation during the Leishmania differentiation process. PLoS One 7(5):e35085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collingridge PW, Brown RW, Ginger ML (2010) Moonlighting enzymes in parasitic protozoa. Parasitology 137(9):1467–1475

    Article  CAS  PubMed  Google Scholar 

  • Cotterell SE, Engwerda CR, Kaye PM (2000) Enhanced hematopoietic activity accompanies parasite expansion in the spleen and bone marrow of mice infected with Leishmania donovani. Infect Immun 68(4):1840–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creek DJ, Barrett MP (2014) Determination of antiprotozoal drug mechanisms by metabolomics approaches. Parasitology 141(1):83–92

    Article  PubMed  Google Scholar 

  • Croft SL, Coombs GH (2003) Leishmaniasis—current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 19(11):502–508

    Article  CAS  PubMed  Google Scholar 

  • Croft SL, Olliaro P (2011) Leishmaniasis chemotherapy—challenges and opportunities. Clin Microbiol Infect 17(10):1478–1483

    Article  CAS  PubMed  Google Scholar 

  • Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19(1):111–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cull B et al (2014) Glycosome turnover in Leishmania major is mediated by autophagy. Autophagy 10(12):2143–2157

    Article  CAS  PubMed  Google Scholar 

  • da Silva R, Sacks DL (1987) Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attenuation. Infect Immun 55(11):2802–2806

    PubMed  PubMed Central  Google Scholar 

  • Davidson RN, den Boer M, Ritmeijer K (2009) Paromomycin. Trans R Soc Trop Med Hyg 103(7):653–660

    Article  CAS  PubMed  Google Scholar 

  • De Muylder G et al (2011) A screen against Leishmania intracellular amastigotes: comparison to a promastigote screen and identification of a host cell-specific hit. PLoS Negl Trop Dis 5(7):e1253

    Article  PubMed  PubMed Central  Google Scholar 

  • de Oliveira CI, Nascimento IP, Barral A, Soto M, Barral-Netto M (2009) Challenges and perspectives in vaccination against leishmaniasis. Parasitol Int 58(4):319–324

    Article  PubMed  CAS  Google Scholar 

  • De Rycker M et al (2013) Comparison of a high-throughput high-content intracellular Leishmania donovani assay with an axenic amastigote assay. Antimicrob Agents Chemother 57(7):2913–2922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Souza DP, Saunders EC, McConville MJ, Likic VA (2006) Progressive peak clustering in GC-MS Metabolomic experiments applied to Leishmania parasites. Bioinformatics 22(11):1391–1396

    Article  PubMed  CAS  Google Scholar 

  • Dereure J et al (2003) Visceral leishmaniasis. Persistence of parasites in lymph nodes after clinical cure. J Infect 47(1):77–81

    Article  CAS  PubMed  Google Scholar 

  • Dermine JF, Desjardins M (1999) Survival of intracellular pathogens within macrophages. Protoplasma 210(1–2):11–24

    Article  Google Scholar 

  • Dermine JF, Goyette G, Houde M, Turco SJ, Desjardins M (2005) Leishmania donovani lipophosphoglycan disrupts phagosome microdomains in J774 macrophages. Cell Microbiol 7(9):1263–1270

    Article  CAS  PubMed  Google Scholar 

  • Dermine JF, Scianimanico S, Prive C, Descoteaux A, Desjardins M (2000) Leishmania promastigotes require lipophosphoglycan to actively modulate the fusion properties of phagosomes at an early step of phagocytosis. Cell Microbiol 2(2):115–126

    Article  CAS  PubMed  Google Scholar 

  • Desjardins M, Descoteaux A (1997) Inhibition of phagolysosomal biogenesis by the Leishmania lipophosphoglycan. J Exp Med 185(12):2061–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27(5):305–318

    Article  CAS  PubMed  Google Scholar 

  • Dostalova A, Volf P (2012) Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors 5:276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downing T et al (2011) Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res 21(12):2143–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle MA et al (2009) LeishCyc: a biochemical pathways database for Leishmania major. BMC Syst Biol 3:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dufner D, Previs SF (2003) Measuring in vivo metabolism using heavy water. Curr Opin Clin Nutr Metab Care 6(5):511–517

    Article  CAS  PubMed  Google Scholar 

  • Eibl H, Unger C (1990) Hexadecylphosphocholine: a new and selective antitumor drug. Cancer Treat Rev 17(2–3):233–242

    Article  CAS  PubMed  Google Scholar 

  • El Fakhry Y, Ouellette M, Papadopoulou B (2002) A proteomic approach to identify developmentally regulated proteins in Leishmania infantum. Proteomics 2(8):1007–1017

    Article  PubMed  Google Scholar 

  • El-Sayed NM et al (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309(5733):409–415

    Article  CAS  PubMed  Google Scholar 

  • Englander SW, Mayne L, Bai Y, Sosnick TR (1997) Hydrogen exchange: the modern legacy of Linderstrom-Lang. Protein Sci 6(5):1101–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans KJ, Kedzierski L (2012) Development of Vaccines against Visceral Leishmaniasis. J Trop Med 2012:892817

    Article  PubMed  Google Scholar 

  • Freitas-Junior LH, Chatelain E, Kim HA, Siqueira-Neto JL (2012) Visceral leishmaniasis treatment: what do we have, what do we need and how to deliver it? Int J Parasitol Drugs Drug Resist 2:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukushima A et al (2014) Metabolomic characterization of knockout mutants in Arabidopsis: development of a metabolite profiling database for knockout mutants in Arabidopsis. Plant Physiol 165(3):948–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangneux JP et al (2007) Recurrent American cutaneous leishmaniasis. Emerg Infect Dis 13(9):1436–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gannavaram S et al (2012) Deletion of mitochondrial associated ubiquitin fold modifier protein Ufm1 in Leishmania donovani results in loss of beta-oxidation of fatty acids and blocks cell division in the amastigote stage. Mol Microbiol 86(1):187–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gannavaram S, Sharma P, Duncan RC, Salotra P, Nakhasi HL (2011) Mitochondrial associated ubiquitin fold modifier-1 mediated protein conjugation in Leishmania donovani. PLoS One 6(1):e16156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garami A, Mehlert A, Ilg T (2001) Glycosylation defects and virulence phenotypes of Leishmania mexicana phosphomannomutase and dolicholphosphate-mannose synthase gene deletion mutants. Mol Cell Biol 21(23):8168–8183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasier HG, Fluckey JD, Previs SF (2010) The application of 2H2O to measure skeletal muscle protein synthesis. Nutr Metab (Lond) 7:31

    Article  CAS  Google Scholar 

  • Gill WP et al (2009) A replication clock for Mycobacterium tuberculosis. Nat Med 15(2):211–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser TA, Baatz JE, Kreishman GP, Mukkada AJ (1988) pH homeostasis in Leishmania donovani amastigotes and promastigotes. Proc Natl Acad Sci U S A 85(20):7602–7606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman-Pinkovich A et al (2016) An arginine deprivation response pathway is induced in Leishmania during macrophage invasion. PLoS Pathog 12(4):e1005494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gossage SM, Rogers ME, Bates PA (2003) Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. Int J Parasitol 33(10):1027–1034

    Article  PubMed  PubMed Central  Google Scholar 

  • Grigore D, Meade JC (2006) A COOH-terminal domain regulates the activity of Leishmania proton pumps LDH1A and LDH1B. Int J Parasitol 36(4):381–393

    Article  CAS  PubMed  Google Scholar 

  • Gupta N, Goyal N, Rastogi AK (2001) In vitro cultivation and characterization of axenic amastigotes of Leishmania. Trends Parasitol 17(3):150–153

    Article  CAS  PubMed  Google Scholar 

  • Gupta N et al (1999) Characterization of intracellular metabolites of axenic amastigotes of Leishmania donovani by 1H NMR spectroscopy. Acta Trop 73(2):121–133

    Article  CAS  PubMed  Google Scholar 

  • Haanstra JR, Gonzalez-Marcano EB, Gualdron-Lopez M, Michels PA (2016) Biogenesis, maintenance and dynamics of glycosomes in Trypanosomatid parasites. Biochim Biophys Acta 1863(5):1038–1048

    Article  CAS  PubMed  Google Scholar 

  • Haile S, Papadopoulou B (2007) Developmental regulation of gene expression in Trypanosomatid parasitic protozoa. Curr Opin Microbiol 10(6):569–577

    Article  CAS  PubMed  Google Scholar 

  • Haldar AK, Sen P, Roy S (2011) Use of antimony in the treatment of leishmaniasis: current status and future directions. Mol Biol Int 2011:571242

    Article  PubMed  PubMed Central  Google Scholar 

  • Handman E (2001) Leishmaniasis: current status of vaccine development. Clin Microbiol Rev 14(2):229–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handman E, Bullen DV (2002) Interaction of Leishmania with the host macrophage. Trends Parasitol 18(8):332–334

    Article  CAS  PubMed  Google Scholar 

  • Handman E, Osborn AH, Symons F, van Driel R, Cappai R (1995) The Leishmania promastigote surface antigen 2 complex is differentially expressed during the parasite life cycle. Mol Biochem Parasitol 74(2):189–200

    Article  CAS  PubMed  Google Scholar 

  • Hart DT, Coombs GH (1982) Leishmania mexicana: energy metabolism of amastigotes and promastigotes. Exp Parasitol 54(3):397–409

    Article  CAS  PubMed  Google Scholar 

  • Helaine S et al (2014) Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343(6167):204–208

    Article  CAS  PubMed  Google Scholar 

  • Helaine S, Holden DW (2013) Heterogeneity of intracellular replication of bacterial pathogens. Curr Opin Microbiol 16(2):184–191

    Article  CAS  PubMed  Google Scholar 

  • Helfert S, Estevez AM, Bakker B, Michels P, Clayton C (2001) Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei. Biochem J 357(Pt 1):117–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellerstein MK (2003) In vivo measurement of fluxes through metabolic pathways: the missing link in functional genomics and pharmaceutical research. Annu Rev Nutr 23:379–402

    Article  CAS  PubMed  Google Scholar 

  • Hellerstein MK (2004) New stable isotope-mass spectrometric techniques for measuring fluxes through intact metabolic pathways in mammalian systems: introduction of moving pictures into functional genomics and biochemical phenotyping. Metab Eng 6(1):85–100

    Article  CAS  PubMed  Google Scholar 

  • Holmes E (2010) The evolution of metabolic profiling in parasitology. Parasitology 137(9):1437–1449

    Article  CAS  PubMed  Google Scholar 

  • Hoppe A (2012) What mRNA abundances can tell us about metabolism. Metabolites 2(3):614–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh EA, Chai CM, de Lumen BO, Neese RA, Hellerstein MK (2004) Dynamics of keratinocytes in vivo using HO labeling: a sensitive marker of epidermal proliferation state. J Invest Dermatol 123(3):530–536

    Article  CAS  PubMed  Google Scholar 

  • Huna-Baron R et al (2000) Mucosal leishmaniasis presenting as sinusitis and optic neuropathy. Arch Ophthalmol 118(6):852–854

    CAS  PubMed  Google Scholar 

  • Ivens AC et al (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309(5733):436–442

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamdhade MD et al (2015) Comprehensive proteomics analysis of glycosomes from Leishmania donovani. OMICS 19(3):157–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi S et al (2014) Visceral Leishmaniasis: advancements in vaccine development via classical and molecular approaches. Front Immunol 5:380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kassi M, Kassi M, Afghan AK, Rehman R, Kasi PM (2008) Marring leishmaniasis: the stigmatization and the impact of cutaneous leishmaniasis in Pakistan and Afghanistan. PLoS Negl Trop Dis 2(10):e259

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaye P, Scott P (2011) Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol 9(8):604–615

    Article  CAS  PubMed  Google Scholar 

  • Kedzierski L (2010) Leishmaniasis vaccine: where are we today? J Glob Infect Dis 2(2):177–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Kell DB et al (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3(7):557–565

    Article  CAS  PubMed  Google Scholar 

  • Killick-Kendrick R, Molyneux DH, Hommel M, Leaney AJ, Robertson ES (1977) Leishmania in phlebotomid sandflies. V. The nature and significance of infections of the pylorus and ileum of the sandfly by Leishmaniae of the Braziliensis complex. Proc R Soc Lond B Biol Sci 198(1131):191–199

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Creek DJ (2015) What role can metabolomics play in the discovery and development of new medicines for infectious diseases? Bioanalysis 7(6):629–631

    Article  CAS  PubMed  Google Scholar 

  • Kimblin N et al (2008) Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. Proc Natl Acad Sci USA 105(29):10125–10130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloehn J et al (2016) Using metabolomics to dissect host-parasite interactions. Curr Opin Microbiol 32:59–65

    Article  CAS  PubMed  Google Scholar 

  • Kloehn J, Saunders EC, O’Callaghan S, Dagley MJ, McConville MJ (2015) Characterization of metabolically quiescent Leishmania parasites in murine lesions using heavy water labeling. PLoS Pathog 11(2):e1004683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopf SH et al (2016) Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum. Proc Natl Acad Sci USA 113(2):E110–E116

    Article  CAS  PubMed  Google Scholar 

  • Kowalski GM et al (2015) In vivo cardiac glucose metabolism in the high-fat fed mouse: Comparison of euglycemic-hyperinsulinemic clamp derived measures of glucose uptake with a dynamic metabolomic flux profiling approach. Biochem Biophys Res Commun 463(4):818–824

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy G et al (2005) Hemoglobin receptor in Leishmania is a hexokinase located in the flagellar pocket. J Biol Chem 280(7):5884–5891

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Engwerda C (2014) Vaccines to prevent leishmaniasis. Clin Transl Immunology 3(3):e13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kushner DJ, Baker A, Dunstall TG (1999) Pharmacological uses and perspectives of heavy water and deuterated compounds. Can J Physiol Pharmacol 77(2):79–88

    Article  CAS  PubMed  Google Scholar 

  • Lahav T et al (2011) Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J 25(2):515–525

    Article  CAS  PubMed  Google Scholar 

  • Lamour SD, Choi BS, Keun HC, Muller I, Saric J (2012) Metabolic characterization of Leishmania major infection in activated and nonactivated macrophages. J Proteome Res 11(8):4211–4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landau BR et al (1995) Use of 2H2O for estimating rates of gluconeogenesis. Application to the fasted state. J Clin Invest 95(1):172–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang T, Goyard S, Lebastard M, Milon G (2005) Bioluminescent Leishmania expressing luciferase for rapid and high throughput screening of drugs acting on amastigote-harbouring macrophages and for quantitative real-time monitoring of parasitism features in living mice. Cell Microbiol 7(3):383–392

    Article  CAS  PubMed  Google Scholar 

  • Laskay T, van Zandbergen G, Solbach W (2003) Neutrophil granulocytes–Trojan horses for Leishmania major and other intracellular microbes? Trends Microbiol 11(5):210–214

    Article  CAS  PubMed  Google Scholar 

  • Lau SK et al (2015) Metabolomic profiling of Burkholderia pseudomallei using UHPLC-ESI-Q-TOF-MS reveals specific biomarkers including 4-methyl-5-thiazoleethanol and unique thiamine degradation pathway. Cell Biosci 5:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leifso K, Cohen-Freue G, Dogra N, Murray A, McMaster WR (2007) Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed. Mol Biochem Parasitol 152(1):35–46

    Article  CAS  PubMed  Google Scholar 

  • Lester W Jr, Sun SH, Seber A (1960) Observations on the influence of deuterium on bacterial growth. Ann NY Acad Sci 84:667–677

    Article  CAS  PubMed  Google Scholar 

  • Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372

    Article  CAS  PubMed  Google Scholar 

  • Lorenz MC, Fink GR (2002) Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 1(5):657–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luque-Ortega JR, van’t Hof W, Veerman EC, Saugar JM, Rivas L (2008) Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania. FASEB J 22(6):1817–1828

    Article  CAS  PubMed  Google Scholar 

  • Magkos F, Mittendorfer B (2009) Stable isotope-labeled tracers for the investigation of fatty acid and triglyceride metabolism in humans in vivo. Clin Lipidol 4(2):215–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maher EA et al (2012) Metabolism of [U-13 C]glucose in human brain tumors in vivo. NMR Biomed 25(11):1234–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier T, Guell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583(24):3966–3973

    Article  CAS  PubMed  Google Scholar 

  • Marovich MA et al (2001) Leishmaniasis recidivans recurrence after 43 years: a clinical and immunologic report after successful treatment. Clin Infect Dis 33(7):1076–1079

    Article  CAS  PubMed  Google Scholar 

  • McCall LI, Zhang WW, Ranasinghe S, Matlashewski G (2013) Leishmanization revisited: immunization with a naturally attenuated cutaneous Leishmania donovani isolate from Sri Lanka protects against visceral leishmaniasis. Vaccine 31(10):1420–1425

    Article  PubMed  Google Scholar 

  • McConville M (2014) Open questions: microbes, metabolism and host-pathogen interactions. BMC Biol 12:18

    Article  PubMed  PubMed Central  Google Scholar 

  • McConville MJ, de Souza D, Saunders E, Likic VA, Naderer T (2007) Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends Parasitol 23(8):368–375

    Article  CAS  PubMed  Google Scholar 

  • McConville MJ, Naderer T (2011) Metabolic pathways required for the intracellular survival of Leishmania. Annu Rev Microbiol 65:543–561

    Article  CAS  PubMed  Google Scholar 

  • McConville MJ, Saunders EC, Kloehn J, Dagley MJ (1988) Leishmania carbon metabolism in the macrophage phagolysosome—feast or famine? F1000Research 4(F1000 Faculty Rev):938

    Google Scholar 

  • McElrath MJ, Murray HW, Cohn ZA (1988) The dynamics of granuloma formation in experimental visceral leishmaniasis. J Exp Med 167(6):1927–1937

    Article  CAS  PubMed  Google Scholar 

  • Michel G et al (2011) Luciferase-expressing Leishmania infantum allows the monitoring of amastigote population size, in vivo, ex vivo and in vitro. PLoS Negl Trop Dis 5(9):e1323

    Article  PubMed  PubMed Central  Google Scholar 

  • Michels PA, Bringaud F, Herman M, Hannaert V (2006) Metabolic functions of glycosomes in Trypanosomatids. Biochim Biophys Acta 1763(12):1463–1477

    Article  CAS  PubMed  Google Scholar 

  • Millington OR, Myburgh E, Mottram JC, Alexander J (2010) Imaging of the host/parasite interplay in cutaneous leishmaniasis. Exp Parasitol 126(3):310–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittra B et al (2013) Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels. J Exp Med 210(2):401–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto S et al (2001) Discrepancies between the gene expression, protein expression, and enzymatic activity of thymidylate synthase and dihydropyrimidine dehydrogenase in human gastrointestinal cancers and adjacent normal mucosa. Int J Oncol 18(4):705–713

    CAS  PubMed  Google Scholar 

  • Moore EM, Lockwood DN (2010) Treatment of visceral leishmaniasis. J Glob Infect Dis 2(2):151–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moradin N, Descoteaux A (2012) Leishmania promastigotes: building a safe niche within macrophages. Front Cell Infect Microbiol 2:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morales MA et al (2010a) Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proc Natl Acad Sci USA 107(18):8381–8386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales MA, Pescher P, Spath GF (2010b) Leishmania major MPK7 protein kinase activity inhibits intracellular growth of the pathogenic amastigote stage. Eukaryot Cell 9(1):22–30

    Article  CAS  PubMed  Google Scholar 

  • Moreira D et al (2012) Impact of continuous axenic cultivation in Leishmania infantum virulence. PLoS Negl Trop Dis 6(1):e1469

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreira D et al (2015) Leishmania infantum modulates host macrophage mitochondrial metabolism by hijacking the SIRT1-AMPK axis. PLoS Pathog 11(3):e1004684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muller AJ et al (2013) Photoconvertible pathogen labeling reveals nitric oxide control of Leishmania major infection in vivo via dampening of parasite metabolism. Cell Host Microbe 14(4):460–467

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Elias EJ et al (2005) Replication dynamics of Mycobacterium tuberculosis in chronically infected mice. Infect Immun 73(1):546–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy EJ (2006) Stable isotope methods for the in vivo measurement of lipogenesis and triglyceride metabolism. J Anim Sci 84(Suppl):E94–E104

    Article  PubMed  Google Scholar 

  • Myler PJ et al (2000) Genomic organization and gene function in Leishmania. Biochem Soc Trans 28(5):527–531

    Article  CAS  PubMed  Google Scholar 

  • Naderer T et al (2006) Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proc Natl Acad Sci USA 103(14):5502–5507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naderer T, Heng J, McConville MJ (2010) Evidence that intracellular stages of Leishmania major utilize amino sugars as a major carbon source. PLoS Pathog 6(12):e1001245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naderer T et al (2015) Intracellular survival of Leishmania major depends on uptake and degradation of extracellular matrix glycosaminoglycans by macrophages. PLoS Pathog 11(9):e1005136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nasereddin A, Schweynoch C, Schonian G, Jaffe CL (2010) Characterization of Leishmania (Leishmania) tropica axenic amastigotes. Acta Trop 113(1):72–79

    Article  CAS  PubMed  Google Scholar 

  • Neese RA et al (2002) Measurement in vivo of proliferation rates of slow turnover cells by 2H2O labeling of the deoxyribose moiety of DNA. Proc Natl Acad Sci USA 99(24):15345–15350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neurohr KJ, Barrett EJ, Shulman RG (1983) In vivo carbon-13 nuclear magnetic resonance studies of heart metabolism. Proc Natl Acad Sci USA 80(6):1603–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noronha FS, Cruz JS, Beirao PS, Horta MF (2000) Macrophage damage by Leishmania amazonensis cytolysin: evidence of pore formation on cell membrane. Infect Immun 68(8):4578–4584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nugent PG, Karsani SA, Wait R, Tempero J, Smith DF (2004) Proteomic analysis of Leishmania mexicana differentiation. Mol Biochem Parasitol 136(1):51–62

    Article  CAS  PubMed  Google Scholar 

  • Olliaro PL et al (2005) Treatment options for visceral leishmaniasis: a systematic review of clinical studies done in India, 1980–2004. Lancet Infect Dis 5(12):763–774

    Article  PubMed  Google Scholar 

  • Oppenheim RD et al (2014) BCKDH: the missing link in apicomplexan mitochondrial metabolism is required for full virulence of Toxoplasma gondii and Plasmodium berghei. PLoS Pathog 10(7):e1004263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ouellette M, Drummelsmith J, Papadopoulou B (2004) Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist Updat 7(4–5):257–266

    Article  CAS  PubMed  Google Scholar 

  • Pawar H, Kulkarni A, Dixit T, Chaphekar D, Patole MS (2014) A bioinformatics approach to reanalyze the genome annotation of kinetoplastid protozoan parasite Leishmania donovani. Genomics 104(6 Pt B):554–561

    Article  CAS  PubMed  Google Scholar 

  • Peacock CS et al (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39(7):839–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson RD, Sousa AQ (1996) Clinical spectrum of Leishmaniasis. Clin Infect Dis 22(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Pimenta PF, Modi GB, Pereira ST, Shahabuddin M, Sacks DL (1997) A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sand fly midgut. Parasitology 115(Pt 4):359–369

    Article  PubMed  Google Scholar 

  • Pouteau E, Beysen C, Saad N, Turner S (2009) Dynamics of adipose tissue development by 2H2O labeling. Methods Mol Biol 579:337–358

    Article  CAS  PubMed  Google Scholar 

  • Previs SF et al (2011) Quantifying cholesterol synthesis in vivo using 2H2O: enabling back-to-back studies in the same subject. J Lipid Res 52(7):1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prina E, Antoine JC, Wiederanders B, Kirschke H (1990) Localization and activity of various lysosomal proteases in Leishmania amazonensis-infected macrophages. Infect Immun 58(6):1730–1737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quinones MP et al (2007) CCL2-independent role of CCR2 in immune responses against Leishmania major. Parasite Immunol 29(4):211–217

    Article  CAS  PubMed  Google Scholar 

  • Raamsdonk LM et al (2001) Co-consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in the HXK2 gene. Yeast 18(11):1023–1033

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitz JD, Purdy JG, Vastag L, Shenk T, Koyuncu E (2011) Metabolomics in drug target discovery. Cold Spring Harb Symp Quant Biol 76:235–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainey PM, MacKenzie NE (1991) A carbon-13 nuclear magnetic resonance analysis of the products of glucose metabolism in Leishmania pifanoi amastigotes and promastigotes. Mol Biochem Parasitol 45(2):307–315

    Article  CAS  PubMed  Google Scholar 

  • Rainey PM, Spithill TW, McMahon-Pratt D, Pan AA (1991) Biochemical and molecular characterization of Leishmania pifanoi amastigotes in continuous axenic culture. Mol Biochem Parasitol 49(1):111–118

    Article  CAS  PubMed  Google Scholar 

  • Rakotomanga M, Blanc S, Gaudin K, Chaminade P, Loiseau PM (2007) Miltefosine affects lipid metabolism in Leishmania donovani promastigotes. Antimicrob Agents Chemother 51(4):1425–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakotomanga M, Loiseau PM, Saint-Pierre-Chazalet M (2004) Hexadecylphosphocholine interaction with lipid monolayers. Biochim Biophys Acta 1661(2):212–218

    Article  CAS  PubMed  Google Scholar 

  • Rangel H, Dagger F, Hernandez A, Liendo A, Urbina JA (1996) Naturally azole-resistant Leishmania braziliensis promastigotes are rendered susceptible in the presence of terbinafine: comparative study with azole-susceptible Leishmania mexicana promastigotes. Antimicrob Agents Chemother 40(12):2785–2791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rastrojo A et al (2013) The transcriptome of Leishmania major in the axenic promastigote stage: transcript annotation and relative expression levels by RNA-seq. BMC Genomics 14:223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Real F et al (2013) The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models. DNA Res 20(6):567–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reithinger R (2008) Leishmaniases’ burden of disease: ways forward for getting from speculation to reality. PLoS Negl Trop Dis 2(10):e285

    Article  PubMed  PubMed Central  Google Scholar 

  • Reuter HD, Fischer JH, Thiele S (1985) Investigations on the effects of heavy water (D2O) on the functional activity of human platelets. Haemostasis 15(3):157–163

    CAS  PubMed  Google Scholar 

  • Ridley DS, De Magalhaes AV, Marsden PD (1989) Histological analysis and the pathogenesis of mucocutaneous leishmaniasis. J Pathol 159(4):293–299

    Article  CAS  PubMed  Google Scholar 

  • Ritter U, Frischknecht F, van Zandbergen G (2009) Are neutrophils important host cells for Leishmania parasites? Trends Parasitol 25(11):505–510

    Article  CAS  PubMed  Google Scholar 

  • Rogers MB et al (2011) Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res 21(12):2129–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers ME, Bates PA (2007) Leishmania manipulation of sand fly feeding behavior results in enhanced transmission. PLoS Pathog 3(6):e91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rojo D et al (2015) A multiplatform metabolomic approach to the basis of antimonial action and resistance in Leishmania infantum. PLoS One 10(7):e0130675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenzweig D et al (2008a) Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J 22(2):590–602

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig D, Smith D, Myler PJ, Olafson RW, Zilberstein D (2008b) Post-translational modification of cellular proteins during Leishmania donovani differentiation. Proteomics 8(9):1843–1850

    Article  CAS  PubMed  Google Scholar 

  • Russell DG, Vanderven BC, Glennie S, Mwandumba H, Heyderman RS (2009) The macrophage marches on its phagosome: dynamic assays of phagosome function. Nat Rev Immunol 9(8):594–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saar Y et al (1998) Characterization of developmentally-regulated activities in axenic amastigotes of Leishmania donovani. Mol Biochem Parasitol 95(1):9–20

    Article  CAS  PubMed  Google Scholar 

  • Sacks DL (1989) Metacyclogenesis in Leishmania promastigotes. Exp Parasitol 69(1):100–103

    Article  CAS  PubMed  Google Scholar 

  • Sacks DL, da Silva RP (1987) The generation of infective stage Leishmania major promastigotes is associated with the cell-surface expression and release of a developmentally regulated glycolipid. J Immunol 139(9):3099–3106

    CAS  PubMed  Google Scholar 

  • Sacks DL, Perkins PV (1984) Identification of an infective stage of Leishmania promastigotes. Science 223(4643):1417–1419

    Article  CAS  PubMed  Google Scholar 

  • Sacks DL, Perkins PV (1985) Development of infective stage Leishmania promastigotes within phlebotomine sand flies. Am J Trop Med Hyg 34(3):456–459

    CAS  PubMed  Google Scholar 

  • Saunders EC et al (2015) Use of (13)C stable isotope labelling for pathway and metabolic flux analysis in Leishmania parasites. Methods Mol Biol 1201:281–296

    Article  CAS  PubMed  Google Scholar 

  • Saunders EC et al (2012) LeishCyc: a guide to building a metabolic pathway database and visualization of metabolomic data. Methods Mol Biol 881:505–529

    Article  CAS  PubMed  Google Scholar 

  • Saunders EC et al (2014) Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism. PLoS Pathog 10(1):e1003888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saxena A et al (2007) Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Mol Biochem Parasitol 152(1):53–65

    Article  CAS  PubMed  Google Scholar 

  • Schlein Y, Jacobson RL, Messer G (1992) Leishmania infections damage the feeding mechanism of the sandfly vector and implement parasite transmission by bite. Proc Natl Acad Sci USA 89(20):9944–9948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schriefer A, Wilson ME, Carvalho EM (2008) Recent developments leading toward a paradigm switch in the diagnostic and therapeutic approach to human leishmaniasis. Curr Opin Infect Dis 21(5):483–488

    Article  PubMed  PubMed Central  Google Scholar 

  • Seco-Hidalgo V, Osuna A, Pablos LM (2015) To bet or not to bet: deciphering cell to cell variation in protozoan infections. Trends Parasitol 31(8):350–356

    Article  PubMed  Google Scholar 

  • Seifert K (2011) Structures, targets and recent approaches in anti-leishmanial drug discovery and development. Open Med Chem J 5:31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seifert K et al (2003) Characterisation of Leishmania donovani promastigotes resistant to hexadecylphosphocholine (miltefosine). Int J Antimicrob Agents 22(4):380–387

    Article  CAS  PubMed  Google Scholar 

  • Seifert K et al (2007) Inactivation of the miltefosine transporter, LdMT, causes miltefosine resistance that is conferred to the amastigote stage of Leishmania donovani and persists in vivo. Int J Antimicrob Agents 30(3):229–235

    Article  CAS  PubMed  Google Scholar 

  • Shalwitz RA et al (1989) Hepatic glycogen synthesis from duodenal glucose and alanine. An in situ 13C NMR study. J Biol Chem 264(7):3930–3934

    CAS  PubMed  Google Scholar 

  • Silva LA, Vinaud MC, Castro AM, Cravo PV, Bezerra JC (2015) In silico search of energy metabolism inhibitors for alternative leishmaniasis treatments. Biomed Res Int 2015:965725

    PubMed  PubMed Central  Google Scholar 

  • Sindermann H, Engel J (2006) Development of miltefosine as an oral treatment for leishmaniasis. Trans R Soc Trop Med Hyg 100(Suppl 1):S17–20

    Article  CAS  PubMed  Google Scholar 

  • Sollelis L et al (2015) First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites. Cell Microbiol 17(10):1405–1412

    Article  CAS  PubMed  Google Scholar 

  • Souza-Lemos C, de Campos SN, Teva A, Porrozzi R, Grimaldi G Jr (2011) In situ characterization of the granulomatous immune response with time in nonhealing lesional skin of Leishmania braziliensis-infected rhesus macaques (Macaca mulatta). Vet Immunol Immunopathol 142(3–4):147–155

    Article  CAS  PubMed  Google Scholar 

  • Stromski ME, Arias-Mendoza F, Alger JR, Shulman RG (1986) Hepatic gluconeogenesis from alanine: 13C nuclear magnetic resonance methodology for in vivo studies. Magn Reson Med 3(1):24–32

    Article  CAS  PubMed  Google Scholar 

  • Stuart K et al (2008) Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 118(4):1301–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian A, Jhawar J, Sarkar RR (2015) Dissecting Leishmania infantum energy metabolism—a systems perspective. PLoS One 10(9):e0137976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sundar S, Goyal AK, More DK, Singh MK, Murray HW (1998) Treatment of antimony-unresponsive Indian visceral leishmaniasis with ultra-short courses of amphotericin-B-lipid complex. Ann Trop Med Parasitol 92(7):755–764

    Article  CAS  PubMed  Google Scholar 

  • Sundar S, Jha TK, Thakur CP, Sinha PK, Bhattacharya SK (2007) Injectable paromomycin for Visceral leishmaniasis in India. N Engl J Med 356(25):2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Takeda H et al (1998) Mechanisms of cytotoxic effects of heavy water (deuterium oxide: D2O) on cancer cells. Anticancer Drugs 9(8):715–725

    Article  CAS  PubMed  Google Scholar 

  • Thalhofer CJ, et al (2010) In vivo imaging of transgenic Leishmania parasites in a live host. J Vis Exp (41)

    Google Scholar 

  • Thi EP, Lambertz U, Reiner NE (2012) Sleeping with the enemy: how intracellular pathogens cope with a macrophage lifestyle. PLoS Pathog 8(3):e1002551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel M, Bruchhaus I (2001) Comparative proteome analysis of Leishmania donovani at different stages of transformation from promastigotes to amastigotes. Med Microbiol Immunol 190(1–2):33–36

    Article  CAS  PubMed  Google Scholar 

  • Thomson JF, Klipfel FJ (1960) Some effects of deuterium oxide in vivo and in vitro on certain enzymes of rat tissues. Biochem Pharmacol 3:283–288

    Article  CAS  PubMed  Google Scholar 

  • Titus RG, Marchand M, Boon T, Louis JA (1985) A limiting dilution assay for quantifying Leishmania major in tissues of infected mice. Parasite Immunol 7(5):545–555

    Article  CAS  PubMed  Google Scholar 

  • Titus RG, Ribeiro JM (1988) Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science 239(4845):1306–1308

    Article  CAS  PubMed  Google Scholar 

  • t’Kindt R et al (2010) Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Negl Trop Dis 4(11):e904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tonkin ML et al (2015) Structural and functional divergence of the aldolase fold in Toxoplasma gondii. J Mol Biol 427(4):840–852

    Article  CAS  PubMed  Google Scholar 

  • Trindade S et al (2016) Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice. Cell Host Microbe 19(6):837–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsigankov P et al (2014) Regulation dynamics of Leishmania differentiation: deconvoluting signals and identifying phosphorylation trends. Mol Cell Proteomics 13(7):1787–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsigankov P, Gherardini PF, Helmer-Citterich M, Spath GF, Zilberstein D (2013) Phosphoproteomic analysis of differentiating Leishmania parasites reveals a unique stage-specific phosphorylation motif. J Proteome Res 12(7):3405–3412

    Article  CAS  PubMed  Google Scholar 

  • van Griensven J et al (2010) Combination therapy for visceral leishmaniasis. Lancet Infect Dis 10(3):184–194

    Article  PubMed  Google Scholar 

  • van Zandbergen G et al (2004) Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J Immunol 173(11):6521–6525

    Article  PubMed  Google Scholar 

  • van Zandbergen G, Solbach W, Laskay T (2007) Apoptosis driven infection. Autoimmunity 40(4):349–352

    Article  PubMed  CAS  Google Scholar 

  • Vanegas G et al (2007) Enolase as a plasminogen binding protein in Leishmania mexicana. Parasitol Res 101(6):1511–1516

    Article  PubMed  Google Scholar 

  • Vermeersch M et al (2009) In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: practical relevance of stage-specific differences. Antimicrob Agents Chemother 53(9):3855–3859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vince JE, Tull D, Landfear S, McConville MJ (2011) Lysosomal degradation of Leishmania hexose and inositol transporters is regulated in a stage-, nutrient- and ubiquitin-dependent manner. Int J Parasitol 41(7):791–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent IM, Barrett MP (2015) Metabolomic-based strategies for anti-parasite drug discovery. J Biomol Screen 20(1):44–55

    Article  PubMed  CAS  Google Scholar 

  • Vincent IM et al (2014) Untargeted metabolomic analysis of miltefosine action in Leishmania infantum reveals changes to the internal lipid metabolism. Int J Parasitol Drugs Drug Resist 4(1):20–27

    Article  PubMed  Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13(4):227–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volf P, Hajmova M, Sadlova J, Votypka J (2004) Blocked stomodeal valve of the insect vector: similar mechanism of transmission in two trypanosomatid models. Int J Parasitol 34(11):1221–1227

    Article  CAS  PubMed  Google Scholar 

  • Walker J et al (2006) Identification of developmentally-regulated proteins in Leishmania panamensis by proteome profiling of promastigotes and axenic amastigotes. Mol Biochem Parasitol 147(1):64–73

    Article  CAS  PubMed  Google Scholar 

  • Westrop GD et al (2015) Metabolomic analyses of Leishmania reveal multiple species differences and large differences in amino acid metabolism. PLoS One 10(9):e0136891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Worthey EA et al (2003) Leishmania major chromosome 3 contains two long convergent polycistronic gene clusters separated by a tRNA gene. Nucleic Acids Res 31(14):4201–4210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenobi R (2013) Single-cell metabolomics: analytical and biological perspectives. Science 342(6163):1243259

    Article  CAS  PubMed  Google Scholar 

  • Zhang WW, Matlashewski G (2015) CRISPR-Cas9-mediated genome editing in Leishmania donovani. MBio 6(4):e00861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zilberstein D, Philosoph H, Gepstein A (1989) Maintenance of cytoplasmic pH and proton motive force in promastigotes of Leishmania donovani. Mol Biochem Parasitol 36(2):109–117

    Article  CAS  PubMed  Google Scholar 

Online Reference

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm J. McConville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kloehn, J., Saunders, E.C., McConville, M.J. (2016). Using Metabolomic Approaches to Characterize the Human Pathogen Leishmania in Macrophages. In: Beale, D., Kouremenos, K., Palombo, E. (eds) Microbial Metabolomics. Springer, Cham. https://doi.org/10.1007/978-3-319-46326-1_4

Download citation

Publish with us

Policies and ethics