Skip to main content

Genetic and Genomic Approaches to Acute Lung Injury

  • Chapter
  • First Online:
Acute Lung Injury and Repair

Part of the book series: Respiratory Medicine ((RM))

Abstract

Acute lung injury (ALI) is a syndrome influenced by genetic and environmental factors, therefore, it is important to examine genetic variants, transcriptional profiles, and epigenetic marks in this disease. This chapter will focus on study design for genome-wide level analysis of genetic variants, coding and noncoding RNAs, and epigenetic marks; methods for genomic analysis and focused approaches for validation of genomic hits and independent replication; and progress that has been made to date in ALI with specific focus on human studies. At the end of the chapter, future directions and integrative analyses of these datasets, together with additional –omic data not discussed in this chapter (microbiome, metabolome, proteome) are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, et al. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353(16):1685–93.

    Article  CAS  PubMed  Google Scholar 

  2. Sweatt AJ, Levitt JE. Evolving epidemiology and definitions of the acute respiratory distress syndrome and early acute lung injury. Clin Chest Med. 2014;35(4):609–24.

    Article  PubMed  Google Scholar 

  3. Reilly JP, Bellamy S, Shashaty MG, Gallop R, Meyer NJ, Lanken PN, et al. Heterogeneous phenotypes of acute respiratory distress syndrome after major trauma. Ann Am Thorac Soc. 2014;11(5):728–36.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Meyer NJ, Christie JD. Genetic heterogeneity and risk of acute respiratory distress syndrome. Semin Respir Crit Care Med. 2013;34(4):459–74.

    Article  PubMed  Google Scholar 

  5. Moazed F, Calfee CS. Environmental risk factors for acute respiratory distress syndrome. Clin Chest Med. 2014;35(4):625–37.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Honiden S, Gong MN. Diabetes, insulin, and development of acute lung injury. Crit Care Med. 2009;37(8):2455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Han S, Mallampalli RK. The acute respiratory distress syndrome: from mechanism to translation. J Immunol. 2015;194(3):855–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7(5):353–64.

    Article  PubMed  CAS  Google Scholar 

  9. Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 2011;29:707–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Quintin J, Cheng SC, van der Meer JW, Netea MG. Innate immune memory: towards a better understanding of host defense mechanisms. Curr Opin Immunol. 2014;29:1–7.

    Article  CAS  PubMed  Google Scholar 

  11. West MA, Heagy W. Endotoxin tolerance: a review. Crit Care Med. 2002;30(1 Supp):S64–73.

    Article  CAS  Google Scholar 

  12. Schmidt EP, Lee WL, Zemans RL, Yamashita C, Downey GP. On, around, and through: neutrophil-endothelial interactions in innate immunity. Physiol (Bethesda). 2011;26(5):334–47.

    Article  CAS  Google Scholar 

  13. Studies N-NWGoRiA, Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, et al. Replicating genotype-phenotype associations. Nature. 2007;447(7145):655–60.

    Google Scholar 

  14. van’t Veer LJ, Bernards R. Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature. 2008;452(7187):564–70.

    Google Scholar 

  15. Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011;12(8):529–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I, et al. Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods. 2013;10(10):949–55.

    Article  CAS  PubMed  Google Scholar 

  17. Sham PC, Purcell SM. Statistical power and significance testing in large-scale genetic studies. Nat Rev Genet. 2014;15(5):335–46.

    Article  CAS  PubMed  Google Scholar 

  18. Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014;15(2):121–32.

    Article  CAS  PubMed  Google Scholar 

  19. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B (Methodological). 1995;57(1):289–300.

    Google Scholar 

  20. Gerstein M. Genomics: ENCODE leads the way on big data. Nature. 2012;489(7415):208.

    Article  CAS  PubMed  Google Scholar 

  21. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012;22(9):1760–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30.

    Google Scholar 

  23. Kruglyak L. The road to genome-wide association studies. Nat Rev Genet. 2008;9(4):314–8.

    Article  CAS  PubMed  Google Scholar 

  24. Slatkin M. Linkage disequilibrium–understanding the evolutionary past and mapping the medical future. Nat Rev Genet. 2008;9(6):477–85.

    Article  CAS  PubMed  Google Scholar 

  25. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic acids Res. 2014;42(Database issue):D1001–6.

    Google Scholar 

  26. Bush WS, Moore JH. Chapter 11: Genome-wide association studies. PLoS Comput Biol. 2012;8(12):e1002822.

    Google Scholar 

  27. Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, et al. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467(7311):52–8.

    Article  CAS  PubMed  Google Scholar 

  28. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65.

    Article  PubMed  CAS  Google Scholar 

  29. Zeggini E, Ioannidis JP. Meta-analysis in genome-wide association studies. Pharmacogenomics. 2009;10(2):191–201.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26(17):2190–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Winkler TW, Day FR, Croteau-Chonka DC, Wood AR, Locke AE, Magi R, et al. Quality control and conduct of genome-wide association meta-analyses. Nat Protoc. 2014;9(5):1192–212.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5(6):e1000529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet. 2011;13(2):135–45.

    Article  CAS  Google Scholar 

  35. Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet. 2010;11(6):415–25.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Q, Lu Q, Zhao H. A review of study designs and statistical methods for genomic epidemiology studies using next generation sequencing. Front Genet. 2015;6:149.

    PubMed  PubMed Central  Google Scholar 

  37. Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S, et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci USA. 2014;111(4):E455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.

    Article  CAS  PubMed  Google Scholar 

  39. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.

    Article  CAS  PubMed  Google Scholar 

  40. Hutchison CA 3rd. DNA sequencing: bench to bedside and beyond. Nucleic Acids Res. 2007;35(18):6227–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11(1):31–46.

    Article  CAS  PubMed  Google Scholar 

  42. Thompson JF, Milos PM. The properties and applications of single-molecule DNA sequencing. Genome Biol. 2011;12(2):217.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, et al. Target-enrichment strategies for next-generation sequencing. Nat Methods. 2010;7(2):111–8.

    Article  CAS  PubMed  Google Scholar 

  44. Berger B, Peng J, Singh M. Computational solutions for omics data. Nat Rev Genet. 2013;14(5):333–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goldstein DB, Allen A, Keebler J, Margulies EH, Petrou S, Petrovski S, et al. Sequencing studies in human genetics: design and interpretation. Nat Rev Genet. 2013;14(7):460–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koboldt DC, Ding L, Mardis ER, Wilson RK. Challenges of sequencing human genomes. Brief Bioinform. 11(5):484–98.

    Google Scholar 

  47. Nielsen R, Paul JS, Albrechtsen A, Song YS. Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet. 2011;12(6):443–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lee S, Wu MC, Lin X. Optimal tests for rare variant effects in sequencing association studies. Biostatistics. 2012;13(4):762–75.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81.

    Article  CAS  PubMed  Google Scholar 

  52. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Cooper GM, Shendure J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat Rev Genet. 2011;12(9):628–40.

    Article  CAS  PubMed  Google Scholar 

  55. Cooper GM, Stone EA, Asimenos G, Green ED, Batzoglou S, Sidow A. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15(7):901–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kiezun A, Garimella K, Do R, Stitziel NO, Neale BM, McLaren PJ, et al. Exome sequencing and the genetic basis of complex traits. Nat Genet. 2012;44(6):623–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cook DN, Pisetsky DS, Schwartz DA. Toll-like receptors in the pathogenesis of human disease. Nat Immunol. 2004;5(10):975–9.

    Article  CAS  PubMed  Google Scholar 

  59. Wurfel MM, Gordon AC, Holden TD, Radella F, Strout J, Kajikawa O, et al. Toll-like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis. Am J Respir Crit Care Med. 2008;178(7):710–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mikacenic C, Reiner AP, Holden TD, Nickerson DA, Wurfel MM. Variation in the TLR10/TLR1/TLR6 locus is the major genetic determinant of interindividual difference in TLR1/2-mediated responses. Genes Immun. 2013;14(1):52–7.

    Article  CAS  PubMed  Google Scholar 

  61. Reddy AJ, Kleeberger SR. Genetic polymorphisms associated with acute lung injury. Pharmacogenomics. 2009;10(9):1527–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shortt K, Chaudhary S, Grigoryev D, Heruth DP, Venkitachalam L, Zhang LQ, et al. Identification of novel single nucleotide polymorphisms associated with acute respiratory distress syndrome by exome-seq. PLoS ONE. 2014;9(11):e111953.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Meyer NJ, Li M, Feng R, Bradfield J, Gallop R, Bellamy S, et al. ANGPT2 genetic variant is associated with trauma-associated acute lung injury and altered plasma angiopoietin-2 isoform ratio. Am J Respir Crit Care Med. 2011;183(10):1344–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meyer NJ, Feng R, Li M, Zhao Y, Sheu CC, Tejera P, et al. IL1RN coding variant is associated with lower risk of acute respiratory distress syndrome and increased plasma IL-1 receptor antagonist. Am J Respir Crit Care Med. 2013;187(9):950–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ahasic AM, Zhao Y, Su L, Sheu CC, Thompson BT, Christiani DC. Adiponectin gene polymorphisms and acute respiratory distress syndrome susceptibility and mortality. PLoS ONE. 2014;9(2):e89170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Brown SM, Grissom CK, Rondina MT, Hoidal JR, Scholand MB, Wolff RK, et al. Polymorphisms in key pulmonary inflammatory pathways and the development of acute respiratory distress syndrome. Exp Lung Res. 2015;41(3):155–62.

    Article  CAS  PubMed  Google Scholar 

  67. Wei Y, Wang Z, Su L, Chen F, Tejera P, Bajwa EK, et al. Platelet count mediates the contribution of a genetic variant in LRRC16A to ARDS risk. Chest. 2015;147(3):607–17.

    Article  PubMed  Google Scholar 

  68. Tejera P, Meyer NJ, Chen F, Feng R, Zhao Y, O’Mahony DS, et al. Distinct and replicable genetic risk factors for acute respiratory distress syndrome of pulmonary or extrapulmonary origin. J Med Genet. 2012;49(11):671–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Johnsson P, Morris KV, Grander D. Pseudogenes: a novel source of trans-acting antisense RNAs. Methods Mol Biol. 2014;1167:213–26.

    Article  CAS  PubMed  Google Scholar 

  70. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–52.

    Google Scholar 

  71. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.

    Article  CAS  PubMed  Google Scholar 

  72. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11(10):733–9.

    Article  CAS  PubMed  Google Scholar 

  73. Quackenbush J. Computational analysis of microarray data. Nat Rev Genet. 2001;2(6):418–27.

    Article  CAS  PubMed  Google Scholar 

  74. Relogio A, Schwager C, Richter A, Ansorge W, Valcarcel J. Optimization of oligonucleotide-based DNA microarrays. Nucleic Acids Res. 2002;30(11):e51.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yang YH, Speed T. Design issues for cDNA microarray experiments. Nat Rev Genet. 2002;3(8):579–88.

    CAS  PubMed  Google Scholar 

  76. Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet. 2006;7(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  77. Expression profiling-best practices for data generation and interpretation in clinical trials. Nat Rev Genet. 2004;5(3):229–37.

    Google Scholar 

  78. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Westermann AJ, Gorski SA, Vogel J. Dual RNA-seq of pathogen and host. Nat Rev Microbiol. 2012;10(9):618–30.

    Article  CAS  PubMed  Google Scholar 

  80. Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509(7500):371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011;12(10):671–82.

    Article  CAS  PubMed  Google Scholar 

  84. Garber M, Grabherr MG, Guttman M, Trapnell C. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods. 2011;8(6):469–77.

    Article  CAS  PubMed  Google Scholar 

  85. Parrish RS, Spencer HJ 3rd. Effect of normalization on significance testing for oligonucleotide microarrays. J Biopharm Stat. 2004;14(3):575–89.

    Article  PubMed  Google Scholar 

  86. Hansen KD, Irizarry RA, Wu Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics. 2012;13(2):204–16.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat Protoc. 2012;7(3):500–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hunter L, Taylor RC, Leach SM, Simon R. GEST: a gene expression search tool based on a novel Bayesian similarity metric. Bioinformatics. 2001;17(Suppl 1):S115–22.

    Article  PubMed  Google Scholar 

  90. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical applications in genetics and molecular biology. 2004;3:Article3.

    Google Scholar 

  91. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.

    Article  CAS  PubMed  Google Scholar 

  93. Auer PL, Srivastava S, Doerge RW. Differential expression—the next generation and beyond. Briefings Funct Genomics. 2012;11(1):57–62.

    Article  CAS  Google Scholar 

  94. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7(3):562–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015;16(3):133–45.

    Article  CAS  PubMed  Google Scholar 

  96. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8.

    Article  CAS  PubMed  Google Scholar 

  97. Wurfel MM, Park WY, Radella F, Ruzinski J, Sandstrom A, Strout J, et al. Identification of high and low responders to lipopolysaccharide in normal subjects: an unbiased approach to identify modulators of innate immunity. J Immunol. 2005;175(4):2570–8.

    Article  CAS  PubMed  Google Scholar 

  98. Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell. 2009;136(1):26–36.

    Article  CAS  PubMed  Google Scholar 

  99. Fitzgerald KA, Caffrey DR. Long noncoding RNAs in innate and adaptive immunity. Curr Opin Immunol. 2014;26:140–6.

    Article  CAS  PubMed  Google Scholar 

  100. Dolinay T, Kim YS, Howrylak J, Hunninghake GM, An CH, Fredenburgh L, et al. Inflammasome-regulated cytokines are critical mediators of acute lung injury. Am J Respir Crit Care Med. 2012;185(11):1225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kangelaris KN, Prakash A, Liu KD, Aouizerat B, Woodruff PG, Erle DJ, et al. Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS. Am J Physiol Lung Cell Mol Physiol. 2015:ajplung 00380 2014.

    Google Scholar 

  102. Kovach MA, Stringer KA, Bunting R, Wu X, San Mateo L, Newstead MW, et al. Microarray analysis identifies IL-1 receptor type 2 as a novel candidate biomarker in patients with acute respiratory distress syndrome. Respir Res. 2015;16(1):29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ware LB, Koyama T, Zhao Z, Janz DR, Wickersham N, Bernard GR, et al. Biomarkers of lung epithelial injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome. Crit Care. 2013;17(5):R253.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Meyer NJ. Beyond single-nucleotide polymorphisms: genetics, genomics, and other ‘omic approaches to acute respiratory distress syndrome. Clin Chest Med. 2014;35(4):673–84.

    Article  PubMed  Google Scholar 

  105. Ahmad N, Gerhard GS, Broach JR, Choi AMK, Howrylak JA. Using RNA-seq profiling to identify biomarkers for the acute respiratory distress syndrome (ARDS). Am J Respir Crit Care Med. 2015;191:A1611.

    Google Scholar 

  106. Zhou T, Garcia JG, Zhang W. Integrating microRNAs into a system biology approach to acute lung injury. Trans Res: J Lab Clin Med. 2011;157(4):180–90.

    Article  CAS  Google Scholar 

  107. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.

    Article  CAS  Google Scholar 

  108. Allis CD, Jenuwein T, Reinberg D, (Eds). Epigenetics: Cold Spring Harbor Laboratory Press; 2009.

    Google Scholar 

  109. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature. 2007;447(7143):433–40.

    Article  CAS  PubMed  Google Scholar 

  110. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4(2):143–53.

    Article  CAS  PubMed  Google Scholar 

  111. Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Gen. 2009;41(12):1350–3.

    Google Scholar 

  112. Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P, et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature. 2010.

    Google Scholar 

  113. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.

    Article  CAS  PubMed  Google Scholar 

  114. Kulis M, Heath S, Bibikova M, Queiros AC, Navarro A, Clot G, et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet. 2012;44(11):1236–42.

    Article  CAS  PubMed  Google Scholar 

  115. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Branco MR, Ficz G, Reik W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet. 2012;13(1):7–13.

    CAS  Google Scholar 

  117. Schones DE, Zhao K. Genome-wide approaches to studying chromatin modifications. Nat Rev Genet. 2008;9(3):179–91.

    Article  CAS  PubMed  Google Scholar 

  118. Ivanov M, Kals M, Kacevska M, Metspalu A, Ingelman-Sundberg M, Milani L. In-solution hybrid capture of bisulfite-converted DNA for targeted bisulfite sequencing of 174 ADME genes. Nucleic Acids Res. 2013;41(6):e72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li Q, Suzuki M, Wendt J, Patterson N, Eichten SR, Hermanson PJ, et al. Post-conversion targeted capture of modified cytosines in mammalian and plant genomes. Nucleic Acids Res. 2015.

    Google Scholar 

  120. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014;11(8):817–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nazor KL, Boland MJ, Bibikova M, Klotzle B, Yu M, Glenn-Pratola VL, et al. Application of a low cost array-based technique—TAB-Array—for quantifying and mapping both 5mC and 5hmC at single base resolution in human pluripotent stem cells. Genomics. 2014;104(5):358–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell. 2012;149(6):1368–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science. 2012;336(6083):934–7.

    Article  CAS  PubMed  Google Scholar 

  124. Maksimovic J, Gordon L, Oshlack A. SWAN: Subset-quantile Within Array Normalization for Illumina Infinium HumanMethylation450 BeadChips. Genome Biol. 2012;13(6):R44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Pedersen BS, Schwartz DA, Yang IV, Kechris KJ. Comb-p: software for combining, analyzing, grouping and correcting spatially correlated P-values. Bioinformatics. 2012;28(22):2986–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jaffe AE, Murakami P, Lee H, Leek JT, Fallin MD, Feinberg AP, et al. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int J Epidemiol. 2012;41(1):200–9.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Price ME, Cotton AM, Lam LL, Farre P, Emberly E, Brown CJ, et al. Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics Chromatin. 2013;6(1):4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 2012;13:86.

    Article  Google Scholar 

  129. Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics. 2014;30(10):1431–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dupont JM, Tost J, Jammes H, Gut IG. De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem. 2004;333(1):119–27.

    Article  CAS  PubMed  Google Scholar 

  131. Coolen MW, Statham AL, Gardiner-Garden M, Clark SJ. Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements. Nucleic Acids Res. 2007;35(18):e119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Roessler J, Ammerpohl O, Gutwein J, Hasemeier B, Anwar SL, Kreipe H, et al. Quantitative cross-validation and content analysis of the 450 k DNA methylation array from Illumina. Inc. BMC Res Notes. 2012;5:210.

    Article  CAS  PubMed  Google Scholar 

  133. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discovery. 2012;11(5):384–400.

    Article  CAS  PubMed  Google Scholar 

  134. Tarakhovsky A. Tools and landscapes of epigenetics. Nat Immunol. 2010;11(7):565–8.

    Article  CAS  PubMed  Google Scholar 

  135. Rivera CM, Ren B. Mapping human epigenomes. Cell. 2013;155(1):39–55.

    Article  CAS  PubMed  Google Scholar 

  136. Kidder BL, Hu G, Zhao K. ChIP-Seq: technical considerations for obtaining high-quality data. Nat Immunol. 2011;12(10):918–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012;22(9):1813–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Adli M, Bernstein BE. Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq. Nat Protoc. 2011;6(10):1656–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Brind’Amour J, Liu S, Hudson M, Chen C, Karimi MM, Lorincz MC. An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations. Nature Commun. 2015;6:6033.

    Article  CAS  Google Scholar 

  140. Furey TS. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet. 2012;13(12):840–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Mehta S, Jeffrey KL. Beyond receptors and signaling: epigenetic factors in the regulation of innate immunity. Immunol Cell Biol. 2015;93(3):233–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Stender JD, Glass CK. Epigenomic control of the innate immune response. Curr Opin Pharmacol. 2013;13(4):582–7.

    Article  CAS  PubMed  Google Scholar 

  144. Alvarez-Errico D, Vento-Tormo R, Sieweke M, Ballestar E. Epigenetic control of myeloid cell differentiation, identity and function. Nat Rev Immunol. 2015;15(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  145. Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature. 2007;447(7147):972–8.

    CAS  PubMed  Google Scholar 

  146. Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F, et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. 2014;345(6204):1251086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345(6204):1250684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Hawkins RD, Hon GC, Ren B. Next-generation genomics: an integrative approach. Nat Rev Genet. 2010;11(7):476–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Majewski J, Pastinen T. The study of eQTL variations by RNA-seq: from SNPs to phenotypes. Trends in genetics: TIG. 2011;27(2):72–9.

    Article  CAS  PubMed  Google Scholar 

  150. Montgomery SB, Dermitzakis ET. From expression QTLs to personalized transcriptomics. Nat Rev Genet. 2011;12(4):277–82.

    Article  CAS  PubMed  Google Scholar 

  151. Ramanan VK, Shen L, Moore JH, Saykin AJ. Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends Gen TIG. 2012;28(7):323–32.

    Article  CAS  Google Scholar 

  152. Kramer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30(4):523–30.

    Article  PubMed  CAS  Google Scholar 

  153. Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, et al. A novel signaling pathway impact analysis. Bioinformatics. 2009;25(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  154. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 2008;9:559.

    Article  CAS  Google Scholar 

  155. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana V. Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yang, I.V. (2017). Genetic and Genomic Approaches to Acute Lung Injury. In: Schnapp, L., Feghali-Bostwick, C. (eds) Acute Lung Injury and Repair. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46527-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46527-2_9

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-46525-8

  • Online ISBN: 978-3-319-46527-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics