Skip to main content

Mechanism of the Antibacterial Activity and Resistance of Polymyxins

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

Discovered in the 1940s, polymyxins are antimicrobial peptides produced by the Gram-positive soil bacterium, Paenibacillus polymyxa, which biosynthesizes polymyxins using non-ribosomal peptide synthetase enzymes [1–3]. Polymyxin B and E (polymyxin E was originally named colistin but was determined to have an identical structure) were used clinically in the late 1950s against Gram-negative bacterial infections [4, 5]. However, nephrotoxic and neurotoxic effects of polymyxin treatment became evident, causing a decline in the use of the polymyxins in the 1970s [6]. Soon, newer antibiotics, such as the aminoglycosides, replaced polymyxins in the clinic. However, since the early 2000s the emergence of multidrug-resistant (MDR) Gram-negative organisms, combined with a lack of novel antimicrobial agents, has led to the resurgence of interest in polymyxins as a last-line treatment ([7–10]; Nation and Li 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ainsworth GC, Brown AM, Brownlee G. Aerosporin, an antibiotic produced by Bacillus aerosporus Greer. Nature. 1947;159(4060):263.

    Article  CAS  PubMed  Google Scholar 

  2. Benedict RG, Langlykke AF. Antibiotic activity of Bacillus polymyxa. J Bacteriol. 1947;54(1):24.

    Google Scholar 

  3. Stansly PG, Shepherd RG, White HJ. Polymyxin: a new chemotherapeutic agent. Bull Johns Hopkins Hosp. 1947;81(1):43–54.

    CAS  PubMed  Google Scholar 

  4. Koyama Y, Kurosawa A, Tsuchiya A, Takakuta K. A new antibiotic “colistin” produced by spore-forming soil bacteria. J Antibiot (Tokyo). 1950;3:457–8.

    Google Scholar 

  5. Wilkinson S. Identity of colistin and polymyxin E. Lancet. 1963;281(7287):922–3.

    Article  Google Scholar 

  6. Wolinsky E, Hines JD. Neurotoxic and nephrotoxic effects of colistin in patients with renal disease. N Engl J Med. 1962;266(15):759–62.

    Article  CAS  PubMed  Google Scholar 

  7. Evans ME, Feola DJ, Rapp RP. Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria. Ann Pharmacother. 1999;33(9):960–7.

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Rayner CR, Nation RL, Owen RJ, Spelman D, Tan KE, Liolios L. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2006;50:2946–50. doi:10.1128/AAC.00103-06.

  9. Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, Paterson DL. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis. 2006;6:589–601. doi:10.1016/S1473-3099(06)70580-1.

    Article  CAS  PubMed  Google Scholar 

  10. Zavascki AP, Goldani LZ, Li J, Nation RL. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother. 2007;60:1206–15. doi:10.1093/jac/dkm357.

    Article  CAS  PubMed  Google Scholar 

  11. Cai Y, Chai D, Wang R, Liang B, Bai N. Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother. 2012;67:1607–15. doi:10.1093/jac/dks084.

  12. Falagas ME, Rafailidis PI, Matthaiou DK. Resistance to polymyxins: mechanisms, frequency and treatment options. Drug Resist Updat. 2010;13:132–8. doi:10.1016/j.drup.2010.05.002.

    Article  CAS  PubMed  Google Scholar 

  13. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical breakpoints. European committee on antimicrobial susceptibility testing, EUCAST 2014. http://www.eucast.org/clinical_breakpoints; 2014.

  14. Wang X, Kang Y, Lou C, Zhao T, Liu L, Jiang X, Fu R, An S, Chen J, Jiang N, Ren L, Wang Q, Baille JK, Gao Z, Yu J. Heteroresistance at the single-cell level: adapting to antibiotic stress through a population-based strategy and growth-controlled interphenotypic coordination. MBio. 2014;5:1–9. doi:10.1128/mBio.00942-13.Editor.

    Article  Google Scholar 

  15. Gales AC, Castanheira M, Jones RN, Sader HS. Antimicrobial resistance among Gram-negative bacilli isolated from Latin America: results from SENTRY Antimicrobial Surveillance Program (Latin America, 2008–2010). Diagn Microbiol Infect Dis. 2012;73:354–60. doi:10.1016/j.diagmicrobio.2012.04.007.

    Article  CAS  PubMed  Google Scholar 

  16. Monaco M, Giani T, Raffone M, Arena F, Garcia-Fernandez A, Pollini S, Network EuSCAPE-Italy, Grundmann H, Pantosti A, Rossolini G. Colistin resistance superimposed to endemic carbapenem-resistant Klebsiella pneumoniae: a rapidly evolving problem in Italy, November 2013 to April 2014. Eurosurveillance. 2014;19:20939. doi:10.2807/1560-7917.ES2014.19.42.20939.

  17. Arroyo LA, Herrera CM, Fernandez L, Hankins JV, Trent MS, Hancock REW. The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrob Agents Chemother. 2011;55:3743–51. doi:10.1128/AAC.00256-11.

  18. Fernández L, Gooderham WJ, Bains M, Mcphee JB, Wiegand I, Hancock REW. Adaptive resistance to the last hope antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS adaptive resistance to the “Last Hope” antibiotics polymyxin B and colistin in P. Antimicrob Agents Chemother. 2010;54:3372–82. doi:10.1128/AAC.00242-10.

  19. Herrera CM, Hankins JV, Trent MS. Activation of PmrA inhibits LpxT-dependent phosphorylation of lipid A promoting resistance to antimicrobial peptides. Mol Microbiol. 2010;76:1444–60. doi:10.1111/j.1365-2958.2010.07150.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Srinivasan VB, Singh BB, Priyadarshi N, Chauhan NK, Rajamohan G. Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae. PLoS One. 2014;9, e96288. doi:10.1371/journal.pone.0096288.

  21. Hancock RE. Peptide antibiotics. Lancet. 1997;349:418–22. doi:10.1016/S0140-6736(97)80051-7.

    Article  CAS  PubMed  Google Scholar 

  22. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67:549. doi:10.1128/MMBR.67.4.593.

    Article  Google Scholar 

  23. Raetz CRH, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635–700. doi:10.1146/annurev.biochem.71.110601.135414.

    Article  CAS  PubMed  Google Scholar 

  24. Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol. 2000;37:239–53.

    Article  CAS  PubMed  Google Scholar 

  25. Silipo A, Molinaro A, Cescutti P, Bedini E, Rizzo R, Parrilli M, Lanzetta R. Complete structural characterization of the lipid A fraction of a clinical strain of B. cepacia genomovar I lipopolysaccharide. Glycobiology. 2005;15:561–70. doi:10.1093/glycob/cwi029.

  26. Levy BYSB, Leive L. An equilibrium between two fractions of lipopolysaccharide in Escherichia coli. Proc Natl Acad Sci U S A. 1968;61(4):1435–9.

    Google Scholar 

  27. Schnaitman CA. Effect of Ethylenediaminetetraacetic Acid, Triton X-100, and lysozyme on the morphology and chemical composition of isolated cell walls of Escherichia coli. J Bacteriol. 1971;108:553–63.

    Google Scholar 

  28. Velkov T, Roberts K. Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol. 2013;8:1–20. doi:10.2217/fmb.13.39.Pharmacology.

    Article  Google Scholar 

  29. Velkov T, Thomson P, Li J. Structure-activity relationships of polymyxin antibiotics. J Med Chem. 2010;53:1898–916. doi:10.1021/jm900999h.Structure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meredith JJ, Dufour A, Bruch MD. Comparison of the structure and dynamics of the antibiotic peptide polymyxin B and the inactive nonapeptide in aqueous trifluoroethanol by NMR spectroscopy. J Phys Chem B. 2009;113:544–51. doi:10.1021/jp808379x.

    Article  CAS  PubMed  Google Scholar 

  31. Powers J-PS, Hancock REW. The relationship between peptide structure and antibacterial activity. Peptides. 2003;24:1681–91. doi:10.1016/j.peptides.2003.08.023.

    Article  CAS  PubMed  Google Scholar 

  32. Bruch MD, Cajal Y, Koh JT, Jain MK. Higher-order structure of polymyxin B: The functional significance of topological flexibility. J Am Chem Soc. 1999;121:11993–2004. doi:10.1021/ja992376m.

    Article  CAS  Google Scholar 

  33. Kidric J. Solution structure of polymyxins B and E and effect of binding to lipopolysaccharide: an NMR and molecular modeling study. J Med Chem. 1999;42(22):4604–13.

    Article  PubMed  Google Scholar 

  34. Clausell A, Garcia-Subirats M, Pujol M, Busquets MA, Rabanal F, Cajal Y. Gram-negative outer and inner membrane models: insertion of cyclic cationic lipopeptides. J Phys Chem B. 2007;111:551–63. doi:10.1021/jp064757+.

    Article  CAS  PubMed  Google Scholar 

  35. Hancock RE, Lehrer R. Cationic peptides: a new source of antibiotics. Trends Biotechnol. 1998;16(2):82–8.

    Article  CAS  PubMed  Google Scholar 

  36. Dixon RA, Chopra I. Polymyxin B and polymyxin B nonapeptide alter cytoplasmic membrane permeability in Escherichia coli. J Antimicrob Chemother. 1986;18:557–63.

    Google Scholar 

  37. Sampson TR, Liu X, Schroeder MR, Kraft CS, Burd EM, Weiss DS. Rapid killing of Acinetobacter baumannii by polymyxins is mediated by a hydroxyl radical death pathway. Antimicrob Agents Chemother. 2012;56:5642–9. doi:10.1128/AAC.00756-12.

  38. Keren I, Wu Y, Inocencio J, Mulcahy LR, Lewis K. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science. 2013;339:1213–6. doi:10.1126/science.1232688.

    Article  CAS  PubMed  Google Scholar 

  39. Liu Y, Imlay JA. Cell death from antibiotics without the involvement of reactive oxygen species. Science. 2013;339:1210–3. doi:10.1126/science.1232751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Deris ZZ, Akter J, Sivashangarie S, Roberts KD, Thompson PE, Nation RL, Li J, Velkov T. A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity. J Antibiot (Tokyo). 2014;67:147–51. doi:10.1038/ja.2013.111.A.

    Article  CAS  Google Scholar 

  41. Deris ZZ, Swarbrick JD, Roberts KD, Azad MA, Akter J, Horne AS, Nation RL, Rogers KL, Thompson PE, Velkov T, Li J. Probing the penetration of antimicrobial polymyxin lipopeptides into gram-negative bacteria. Bioconjug Chem. 2014;25:750–60. doi:10.1021/bc500094d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mogi T, Murase Y, Mori M, Shiomi K, Omura S, Paranagama MP, Kita K. Polymyxin B identified as an inhibitor of alternative NADH dehydrogenase and malate: quinone oxidoreductase from the Gram-positive bacterium Mycobacterium smegmatis. J Biochem. 2009;146:491–9. doi:10.1093/jb/mvp096.

  43. Lee H, Hsu F, Turk J, Eduardo A, Groisman EA. The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J Bacteriol. 2004;186(13):4124–33. doi:10.1128/JB.186.13.4124.

  44. Moffatt JH, Harper M, Harrison P, Hale JDF, Vinogradov E, Seemann T, Henry R, Crane B, St Michael F, Cox AD, Adler B, Nation RL, Li J, Boyce JD. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother. 2010;54:4971–7. doi:10.1128/AAC.00834-10.

  45. Moskowitz SM, Brannon MK, Dasgupta N, Pier M, Sgambati N, Miller AK, Selgrade SE, Miller SI, Denton M, Conway SP, Johansen HK, Høiby N. PmrB mutations promote polymyxin resistance of Pseudomonas aeruginosa isolated from colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother. 2012;56:1019–30. doi:10.1128/AAC.05829-11.

  46. Nummila K, Kilpelainen I, Zahringer U, Vaara M, Helander IM. Lipopolysaccharides of polymyxin B-resistant mutants of Escherichia coli are extensively substituted by 2-aminoethyl pyrophosphate and contain aminoarabinose in lipid A. Mol Microb. 1995;16(2):271–8.

    Google Scholar 

  47. Pelletier MR, Casella LG, Jones JW, Adams MD, Zurawski DV, Hazlett KRO, Doi Y, Ernst RK. Unique structural modifications are present in the lipopolysaccharide from colistin-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother. 2013;57:4831–40. doi:10.1128/AAC.00865-13.

  48. Isshiki Y, Kawahara K, Za U. Isolation and characterisation of disodium (4-amino-4-deoxy-beta-L-arabinopyranosyl)-(1→8)-(D-glycero-alpha-D-talo-oct-2-ulopyranosylona te)-(2→4)-(methyl 3-deoxy-D-manno-oct-2-ulopyranosid)onate from the lipopolysaccharide of Burkholderia cepacia. Carbohydr Res. 1998;313:21–7.

    Google Scholar 

  49. Gooderham WJ, Gellatly SL, Sanschagrin F, McPhee JB, Bains M, Cosseau C, Levesque RC, Hancock REW. The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. Microbiology. 2009;155:699–711. doi:10.1099/mic.0.024554-0.

  50. McPhee JB, Lewenza S, Hancock REW. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol. 2003;50:205–17. doi:10.1046/j.1365-2958.2003.03673.x.

  51. Tran AX, Lester ME, Stead CM, Raetz CRH, Maskell DJ, McGrath SC, Cotter RJ, Trent MS. Resistance to the antimicrobial peptide polymyxin requires myristoylation of Escherichia coli and Salmonella typhimurium lipid A. J Biol Chem. 2005;280:28186–94. doi:10.1074/jbc.M505020200.

  52. Winfield MD, Groisman EA. Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Proc Natl Acad Sci U S A. 2004;101:17162–7. doi:10.1073/pnas.0406038101.

  53. Hamad MA, Di Lorenzo F, Molinaro A, Valvano MA. Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia(†). Mol Microbiol. 2012;85:962–74. doi:10.1111/j.1365-2958.2012.08154.x.

  54. Gunn JS, Lim KB, Krueger J, Kim K, Guo L, Hackett M, Miller SI. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol. 1998;27:1171–82.

    Article  CAS  PubMed  Google Scholar 

  55. Breazeale SD, Ribeiro AA, McClerren AL, Raetz CRH. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-Amino-4-deoxy-L-arabinose. Identification and function of UDP-4-deoxy-4-formamido-L-arabinose. J Biol Chem. 2005;280:14154–67. doi:10.1074/jbc.M414265200.

  56. Trent MS, Ribeiro AA, Lin S, Cotter RJ, Raetz CR. An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. J Biol Chem. 2001;276:43122–31. doi:10.1074/jbc.M106961200.

  57. Yan A, Guan Z, Raetz CRH. An undecaprenyl phosphate-aminoarabinose flippase required for polymyxin resistance in Escherichia coli. J Biol Chem. 2007;282:36077–89. doi:10.1074/jbc.M706172200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou Z, Ribeiro AA, Lin S, Cotter RJ, Miller SI, Raetz CR. Lipid A modifications in polymyxin-resistant Salmonella typhimurium: PMRA-dependent 4-amino-4-deoxy-L-arabinose, and phosphoethanolamine incorporation. J Biol Chem. 2001;276:43111–21. doi:10.1074/jbc.M106960200.

    Article  CAS  PubMed  Google Scholar 

  59. Lesho E, Yoon E-J, McGann P, Snesrud E, Kwak Y, Milillo M, Onmus-Leone F, Preston L, St Clair K, Nikolich M, Viscount H, Wortmann G, Zapor M, Grillot-Courvalin C, Courvalin P, Clifford R, Waterman PE. Emergence of colistin-resistance in extremely drug-resistant Acinetobacter baumannii containing a novel pmrCAB operon during colistin therapy of wound infections. J Infect Dis. 2013;208:1142–51. doi:10.1093/infdis/jit293.

    Article  CAS  PubMed  Google Scholar 

  60. Chen HD, Groisman EA. The biology of the PmrA/PmrB two-component system: the major regulator of lipopolysaccharide modifications. Annu Rev Microbiol. 2013;67:83–112. doi:10.1146/annurev-micro-092412-155751.

    Article  CAS  PubMed  Google Scholar 

  61. Gunn JS, Ernst RK, McCoy AJ, Miller SI. Constitutive mutations of the Salmonella enterica serovar Typhimurium transcriptional virulence regulator phoP. Infect Immun. 2000;68:3758–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gunn JS, Ryan SS, Van Velkinburgh JC, Ernst RK, Miller SI. Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium. Infect Immun. 2000;68:6139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, Xu W, Klevit RE, Le Moual H, Miller SI. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell. 2005;122:461–72. doi:10.1016/j.cell.2005.05.030.

    Article  CAS  PubMed  Google Scholar 

  64. Johnson L, Horsman SR, Charron-Mazenod L, Turnbull AL, Mulcahy H, Surette MG, Lewenza S. Extracellular DNA-induced antimicrobial peptide resistance in Salmonella enterica serovar Typhimurium. BMC Microbiol. 2013;13:115. doi:10.1186/1471-2180-13-115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kox LFF, Wo MMSM, Groisman EA. A small protein that mediates the activation of a two-component system by another two-component system. EMBO. 2000;19:1861–72.

    Article  CAS  Google Scholar 

  66. Fernández L, Jenssen H, Bains M, Wiegand I, Gooderham WJ, Hancock REW. The two-component system CprRS senses cationic peptides and triggers adaptive resistance in Pseudomonas aeruginosa independently of ParRS. Antimicrob Agents Chemother. 2012;56:6212–22. doi:10.1128/AAC.01530-12.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Moskowitz SM, Ernst RK, Miller SI. PmrAB, A two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A PmrAB. J Bacteriol. 2004;186(2):575. doi:10.1128/JB.186.2.575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Muller C, Plésiat P, Jeannot K. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2011;55:1211–21. doi:10.1128/AAC.01252-10.

    Article  CAS  PubMed  Google Scholar 

  69. Macfarlane EL, Kwasnicka A, Ochs MM, Hancock RE. PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol. 1999;34:305–16.

    Article  CAS  PubMed  Google Scholar 

  70. Kato A, Chen HD, Latifi T, Groisman EA. Reciprocal control between a bacterium’s regulatory system and the modification status of its lipopolysaccharide. Mol Cell. 2012;47:897–908. doi:10.1016/j.molcel.2012.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Beceiro A, Llobet E, Aranda J, Bengoechea JA, Doumith M, Hornsey M, Dhanji H, Chart H, Bou G, Livermore DM, Woodford N. Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother. 2011;55:3370–9. doi:10.1128/AAC.00079-11.

  72. Adams MD, Nickel GC, Bajaksouzian S, Lavender H, Murthy AR, Jacobs MR, Bonomo RA. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother. 2009;53:3628–34. doi:10.1128/AAC.00284-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT, Baldwin AJ, Robinson CV. Membrane proteins bind lipids selectively to modulate their structure and function. Nature. 2014;510:172–5. doi:10.1038/nature13419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moffatt JH, Harper M, Adler B, Nation RL, Li J, Boyce JD. Insertion sequence ISAba11 is involved in colistin resistance and loss of lipopolysaccharide in Acinetobacter baumannii. Antimicrob Agents Chemother. 2011;55:3022–4. doi:10.1128/AAC.01732-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. García-Quintanilla M, Pulido MR, Moreno-Martínez P, Martín-Peña R, López-Rojas R, Pachón J, McConnell MJ. Activity of host antimicrobials against multidrug-resistant Acinetobacter baumannii acquiring colistin resistance through loss of lipopolysaccharide. Antimicrob Agents Chemother. 2014;58:2972–5. doi:10.1128/AAC.02642-13.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Beceiro A, Moreno A, Fernández N, Vallejo JA, Aranda J, Adler B, Harper M, Boyce JD, Bou G. Biological cost of different mechanisms of colistin resistance and their impact on virulence in Acinetobacter baumannii. Antimicrob Agents Chemother. 2014;58:518–26. doi:10.1128/AAC.01597-13.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Henry R, Vithanage N, Harrison P, Seemann T, Coutts S, Moffatt JH, Nation RL, Li J, Harper M, Adler B, Boyce JD. Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-β-1,6-N-acetylglucosamine. Antimicrob Agents Chemother. 2012;56:59–69. doi:10.1128/AAC.05191-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li J, Nation RL, Owen RJ, Wong S, Spelman D, Franklin C. Antibiograms of multidrug-resistant clinical Acinetobacter baumannii: promising therapeutic options for treatment of infection with colistin-resistant strains. Clin Infect Dis. 2007;45:594–8. doi:10.1086/520658.

    Article  CAS  PubMed  Google Scholar 

  79. Tzeng Y, Ambrose KD, Zughaier S, Miller YK, Shafer WM, David S, Zhou X, Stephens DS. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol. 2005;187(15):5387. doi:10.1128/JB.187.15.5387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mathur J, Waldor MK. The vibrio cholerae ToxR-regulated porin OmpU confers resistance to antimicrobial peptides. Mol Microbiol. 2004;72(6):3577–83. doi:10.1128/IAI.72.6.3577.

    CAS  Google Scholar 

  81. Mathur J, Davis BM, Waldor MK. Antimicrobial peptides activate the Vibrio cholerae sigmaE regulon through an OmpU-dependent signalling pathway. Mol Microbiol. 2007;63:848–58. doi:10.1111/j.1365-2958.2006.05544.x.

    Article  CAS  PubMed  Google Scholar 

  82. Duperthuy M, Binesse J, Le Roux F, Romestand B, Caro A, Got P, Givaudan A, Mazel D, Bachère E, Destoumieux-Garzón D. The major outer membrane protein OmpU of Vibrio splendidus contributes to host antimicrobial peptide resistance and is required for virulence in the oyster Crassostrea gigas. Environ Microbiol. 2010;12:951–63. doi:10.1111/j.1462-2920.2009.02138.x.

    Article  CAS  PubMed  Google Scholar 

  83. Bengoechea JA, Skurnik M. Temperature-regulated efflux pump/potassium antiporter system mediates resistance to cationic antimicrobial peptides in Yersinia. Mol Microbiol. 2000;37:67–80.

    Article  CAS  PubMed  Google Scholar 

  84. Bengoechea JA, Zhang L, Toivanen P, Skurnik M. Regulatory network of lipopolysaccharide O-antigen biosynthesis in Yersinia enterocolitica includes cell envelope-dependent signals. Mol Microbiol. 2002;44:1045–62.

    Article  CAS  PubMed  Google Scholar 

  85. Campos MA, Vargas MA, Regueiro V, Llompart CM, Albertí S, Bengoechea JA. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun. 2004;72:7107–14. doi:10.1128/IAI.72.12.7107-7114.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Llobet E, Tomás JM, Bengoechea JA. Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology. 2008;154:3877–86. doi:10.1099/mic.0.2008/022301-0.

    Article  CAS  PubMed  Google Scholar 

  87. Needham BD, Trent MS. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol. 2013;11:467–81. doi:10.1038/nrmicro3047.

    Article  CAS  PubMed  Google Scholar 

  88. Bos MP, Tommassen J. Viability of a capsule- and lipopolysaccharide-deficient mutant of Neisseria meningitidis. Infect Immun. 2005;73:6194–7. doi:10.1128/IAI.73.9.6194-6197.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Keck M, Gisch N, Moll H, Vorhölter F-J, Gerth K, Kahmann U, Lissel M, Lindner B, Niehaus K, Holst O. Unusual outer membrane lipid composition of the gram-negative, lipopolysaccharide-lacking mycobacterium Sorangium cellulosum So ce56. J Biol Chem. 2011;286:12850–9. doi:10.1074/jbc.M110.194209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Moffatt JH, Harper M, Mansell A, Crane B, Fitzsimons TC, Nation RL, Li J, Adler B, Boyce JD. Lipopolysaccharide-deficient Acinetobacter baumannii shows altered signaling through host Toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37. Infect Immun. 2013;81:684–9. doi:10.1128/IAI.01362-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Aguirre A, Lejona S, Véscovi EG, Soncini FC. Phosphorylated PmrA interacts with the promoter region of ugd in Salmonella enterica serovar typhimurium. J Bacteriol. 2000;182:3874–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Anisimov AP, Dentovskaya SV, Titareva GM, Bakhteeva IV, Shaikhutdinova RZ, Balakhonov SV, Lindner B, Kocharova NA, Senchenkova SN, Holst O, Pier GB, Knirel YA. Intraspecies and temperature-dependent variations in susceptibility of Yersinia pestis to the bactericidal action of serum and to polymyxin B. Infect Immun. 2005;73:7324–31. doi:10.1128/IAI.73.11.7324-7331.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chambers JR, Sauer K. The MerR-like regulator BrlR impairs Pseudomonas aeruginosa biofilm tolerance to colistin by repressing PhoPQ. J Bacteriol. 2013;195:4678–88. doi:10.1128/JB.00834-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chantratita N, Tandhavanant S, Wikraiphat C, Trunck LA, Rholl DA, Thanwisai A, Saiprom N, Limmathurotsakul D, Korbsrisate S, Day NPJ, Schweizer HP, Peacock SJ. Proteomic analysis of colony morphology variants of Burkholderia pseudomallei defines a role for the arginine deaminase system in bacterial survival. J Proteomics. 2012;75:1031–42. doi:10.1016/j.jprot.2011.10.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dentovskaya SV, Anisimov AP, Kondakova AN, Lindner B, Bystrova OV, Svetoch TE, Shaikhutdinova RZ, Ivanov SA, Bakhteeva IV, Titareva GM, Knirel AYA. Functional characterization and biological significance of Yersinia pestis lipopolysaccharide biosynthesis genes. Biochem Biokhimiia. 2011;76:808–22. doi:10.1134/S0006297911070121.

    Article  CAS  Google Scholar 

  96. Fernández L, Alvarez-Ortega C, Wiegand I, Olivares J, Kocíncová D, Lam JS, Martínez JL, Hancock REW. Characterization of the polymyxin B resistome of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57:110–9. doi:10.1128/AAC.01583-12.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Fu W, Yang F, Kang X, Zhang X, Li Y, Xia B, Jin C. First structure of the polymyxin resistance proteins. Biochem Biophys Res Commun. 2007;361:1033–7. doi:10.1016/j.bbrc.2007.07.144.

    Article  CAS  PubMed  Google Scholar 

  98. Gunn JS, Hohmann EL, Miller SI. Transcriptional regulation of Salmonella virulence: a PhoQ periplasmic domain mutation results in increased net phosphotransfer to PhoP. J Bacteriol. 1996;178:6369–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gutu AD, Sgambati N, Strasbourger P, Brannon MK, Jacobs MA, Haugen E, Kaul RK, Johansen HK, Høiby N, Moskowitz SM. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob Agents Chemother. 2013;57:2204–15. doi:10.1128/AAC.02353-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ito-Kagawa M, Koyama Y. Selective cleavage of a peptide antibiotic, colisitin by colistinase. J Antibiot (Tokyo). 1980;33(12):1551–5.

    Article  CAS  Google Scholar 

  101. Kim Y, Bae IK, Lee H, Jeong SH, Yong D, Lee K. In vivo emergence of colistin resistance in Acinetobacter baumannii clinical isolates of sequence type 357 during colistin treatment. Diagn Microbiol Infect Dis. 2014;79:362–6. doi:10.1016/j.diagmicrobio.2014.03.027.

    Article  CAS  PubMed  Google Scholar 

  102. López-Rojas R, McConnell MJ, Jiménez-Mejías ME, Domínguez-Herrera J, Fernández-Cuenca F, Pachón J. Colistin resistance in a clinical Acinetobacter baumannii strain appearing after colistin treatment: effect on virulence and bacterial fitness. Antimicrob Agents Chemother. 2013;57:4587–9. doi:10.1128/AAC.00543-13.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Miller AK, Brannon MK, Stevens L, Johansen HK, Selgrade SE, Miller SI, Høiby N, Moskowitz SM. PhoQ mutations promote lipid A modification and polymyxin resistance of Pseudomonas aeruginosa found in colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother. 2011;55:5761–9. doi:10.1128/AAC.05391-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mulcahy H, Charron-Mazenod L, Lewenza S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 2008;4, e1000213. doi:10.1371/journal.ppat.1000213.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Reinés M, Llobet E, Llompart CM, Moranta D, Pérez-Gutiérrez C, Bengoechea JA. Molecular basis of Yersinia enterocolitica temperature-dependent resistance to antimicrobial peptides. J Bacteriol. 2012;194:3173–88. doi:10.1128/JB.00308-12.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rodriguez CH, Hernan RC, Bombicino K, Karina B, Granados G, Gabriela G, Nastro M, Marcela N, Vay C, Carlos V, Famiglietti A, Angela F. Selection of colistin-resistant Acinetobacter baumannii isolates in postneurosurgical meningitis in an intensive care unit with high presence of heteroresistance to colistin. Diagn Microbiol Infect Dis. 2009;65:188–91. doi:10.1016/j.diagmicrobio.2009.05.019.

    Article  PubMed  Google Scholar 

  107. Snitkin ES, Zelazny AM, Gupta J, Palmore TN, Murray PR, Segre JA. Genomic insights into the fate of colistin resistance and Acinetobacter baumannii during patient treatment. Genome Res. 2013;23:1155–62. doi:10.1101/gr.154328.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tan C, Li J, Nation RL. Activity of colistin against heteroresistant Acinetobacter baumannii and emergence of resistance in an. Antimicrob Agents Chemother. 2007;51:3413–5. doi:10.1128/AAC.01571-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang X, Ribeiro AA, Guan Z, Raetz CRH. Identification of undecaprenyl phosphate-beta-D-galactosamine in Francisella novicida and its function in lipid A modification. Biochemistry. 2009;48:1162–72. doi:10.1021/bi802211k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wiese A, Gutsmann T, Seydel U. Towards antibacterial strategies: studies on the mechanisms of interaction between antibacterial peptides and model membranes. J Endotoxin Res. 2003;9:67–84. doi:10.1179/096805103125001441.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roger L. Nation Ph.D. or Jian Li Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Johnson, M.D., Nation, R.L., Li, J. (2017). Mechanism of the Antibacterial Activity and Resistance of Polymyxins. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-46718-4_23

Download citation

Publish with us

Policies and ethics