Skip to main content

High Sensitivity Optical Structures for Relative Humidity Sensing

  • Chapter
  • First Online:
Sensors for Everyday Life

Abstract

This chapter is focused in the different optical structures and materials that have been used for the development of optical fiber humidity sensors. First, we will start with a short introduction of what relative humidity is, and why it has been extensively investigated. We will make also a brief summary of the different options that have been developed by now, showing the evolution of this research field. Then we will look more closely at the most used structures, the most common materials and the devices having greater sensitivity and resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P.R. Wiederhold, Water vapor measurement: methods and instrumentation, vol 1 (CRC Press, 1997)

    Google Scholar 

  2. A. Urrutia, P.J. Rivero, J. Goicoechea, F.J. Arregui, I.R. Matías, Humidity sensor based on a long-period fiber grating coated with a hydrophobic thin film, in (EWOFS’10) Fourth European Workshop on Optical Fibre Sensors (International Society for Optics and Photonics, 2010), pp. 765320–765320

    Google Scholar 

  3. C. Bariain, I.R. Matı́as, F.J. Arregui, M. Lopez-Amo, Optical fiber humidity sensor based on a tapered fiber coated with agarose gel. Sens. Actuators B: Chem. 69(1), 127–131 (2000)

    Article  Google Scholar 

  4. Glossary of atmospheric chemistry terms (Recommendations 1990), Pure Appl. Chem. 62, 2167 (1990). doi:10.1351/goldbook.A00155. ISBN 0-9678550-9-8

  5. M.M. Choi, O.L. Tse, Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film. Anal. Chim. Acta 378(1), 127–134 (1999)

    Article  Google Scholar 

  6. T.L. Yeo, T. Sun, K.T.V. Grattan, Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuators, A 144(2), 280–295 (2008)

    Article  Google Scholar 

  7. J.F. Boyle, K.A. Jones, The effects of CO, water vapor and surface temperature on the conductivity of a SnO2 gas sensor. J. Electron. Mater. 6(6), 717–733 (1977)

    Article  Google Scholar 

  8. C. Pijolat, R. Lalauze, Influence of adsorbed hydroxyl species on the electrical conductance of SnO 2. Sens. Actuators 14(1), 27–33 (1988)

    Article  Google Scholar 

  9. E.W. Thornton, P.G. Harrison, Tin oxide surfaces. Part 1.—surface hydroxyl groups and the chemisorption of carbon dioxide and carbon monoxide on tin (IV) oxide. J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases 71, 461–472 (1975)

    Article  Google Scholar 

  10. G. Korotchenkov, V. Brynzari, S. Dmitriev, Electrical behavior of SnO2 thin films in humid atmosphere. Sens. Actuators B: Chem. 54(3), 197–201 (1999)

    Article  Google Scholar 

  11. Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, H. Park, Capacitive humidity sensor design based on anodic aluminum oxide. Sens. Actuators B: Chem. 141(2), 441–446 (2009)

    Article  Google Scholar 

  12. Y. Sakai, Y. Sadaoka, M. Matsuguchi, Humidity sensors based on polymer thin films. Sens. Actuators B: Chem. 35(1), 85–90 (1996)

    Article  Google Scholar 

  13. K.T.V. Grattan, T. Sun, Fiber optic sensor technology: an overview. Sens. Actuators, A 82(1), 40–61 (2000)

    Article  Google Scholar 

  14. A.P. Russell, K.S. Fletcher, Optical sensor for determination of moisture. Anal. Chim. Acta 170, 209–216 (1985)

    Article  Google Scholar 

  15. S.K. Khijwania, K.L. Srinivasan, J.P. Singh, Performance optimized optical fiber sensor for humidity measurement. Opt. Eng. 44(3), 034401–034401 (2005)

    Article  Google Scholar 

  16. B.D. MacCraith, Enhanced evanescent sensors based on sol-gel derived porous glass coating. Sens. Actuators, B 11, 29–33 (1993)

    Article  Google Scholar 

  17. F.J. Arregui, Z. Ciaurriz, M. Oneca, I.R. Matias, An experimental study about hydrogels for the fabrication of optical fiber humidity sensors. Sens. Actuators B (2003)

    Google Scholar 

  18. C. Barian, I.R. Matis, F.J. Arregui, M. Lopez-Amo, Optical fiber humidity sensor based on a tapered coated with agarose gel. Sens. Actuators, B 69, 127–131 (2000)

    Article  Google Scholar 

  19. J.M. Corres, F.J. Arregui, I.R. Matías, Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings. Sens. Actuators B: Chem. 122(2), 442–449 (2007)

    Article  Google Scholar 

  20. M. Hernaez, C.R. Zamarreño, C. Fernandez-Valdivielso, I. Del Villar, F.J. Arregui, I.R. Matias, Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region. Phys. Status Solidi (C) 7(12), 2767–2769 (2010)

    Article  Google Scholar 

  21. M. Marciniak, J. Grzegorzewski, M. Szustakowski, Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer. IEE Proc. J (Optoelectronics) 140(4), 247–252 (1993)

    Article  Google Scholar 

  22. F. Yang, J.R. Sambles, Determination of the optical permittivity and thickness of absorbing films using long range modes. J. Mod. Opt. 44(6), 1155–1163 (1997)

    Article  Google Scholar 

  23. I. Del Villar, C.R. Zamarreño, P. Sanchez, M. Hernaez, C.F. Valdivielso, F.J. Arregui, I.R. Matias, Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers. J. Opt. 12(9), 095503 (2010)

    Article  Google Scholar 

  24. C.R. Zamarreño, I. Del Villar, P. Sanchez, M. Hernaez, C. Fernandez, I.R. Matias, F.J. Arregui, Lossy-mode resonance-based refractometers by means of indium oxide coatings fabricated onto optical fibers, in (EWOFS’10) Fourth European Workshop on Optical Fibre Sensors ( International Society for Optics and Photonics, 2010), pp. 76531 W–76531 W

    Google Scholar 

  25. P. Sanchez, C.R. Zamarreño, M. Hernaez, I. del Villar, I.R. Matias, F.J. Arregui, Humidity sensor fabricated by deposition of SnO2 layers onto optical fibers, in Fifth European Workshop on Optical Fibre Sensors (International Society for Optics and Photonics, 2013), pp. 87940C–87940C

    Google Scholar 

  26. A.B. Socorro, I. Del Villar, J.M. Corres, F.J. Arregui, Lossy mode resonance-based pH sensor using a tapered single mode optical fiber coated with a polymeric nanostructure, in Sensors, IEEE 2011 (IEEE, 2011), pp. 238–241

    Google Scholar 

  27. C. Ruiz Zamarreño, P. Zubiate, M. Sagües, I.R. Matias, F.J. Arregui, Experimental demonstration of lossy mode resonance generation for transverse-magnetic and transverse-electric polarizations. Opt. Lett. 38(14), 2481–2483 (2013)

    Article  Google Scholar 

  28. M. Hernáez, I. Del Villar, C.R. Zamarreño, F.J. Arregui, I.R. Matias, Optical fiber refractometers based on lossy mode resonances supported by TiO 2 coatings. Appl. Opt. 49(20), 3980–3985 (2010)

    Article  Google Scholar 

  29. H.P. Ho, W.W. Lam, Application of differential phase measurement technique to surface plasmon resonance sensors. Sens. Actuators B: Chem. 96(3), 554–559 (2003)

    Article  Google Scholar 

  30. S. Zeng, D. Baillargeat, H.P. Ho, K.T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 43(10), 3426–3452 (2014)

    Article  Google Scholar 

  31. J.B. González-Díaz, A. García-Martín, J.M. García-Martín, A. Cebollada, G. Armelles, B. Sepúlveda, Y. Alaverdyan, M. Käll, Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. Small 4(2), 202–205 (2008)

    Article  Google Scholar 

  32. P. Sanchez, C.R. Zamarreño, M. Hernaez, I. Del Villar, C. Fernandez-Valdivielso, I.R. Matias, F.J. Arregui, Lossy mode resonances toward the fabrication of optical fiber humidity sensors. Meas. Sci. Technol. 23(1), 014002 (2012)

    Article  Google Scholar 

  33. P. Zubiate, C.R. Zamarreño, I. Del Villar, I.R. Matias, F.J. Arregui, High sensitive refractometers based on lossy mode resonances (LMRs) supported by ITO coated D-shaped optical fibers. Opt. Express 23(6), 8045–8050 (2015)

    Article  Google Scholar 

  34. J.M. Corres, F.J. Arregui, I.R. Matias, Design of humidity sensors based on tapered optical fibers. J. Lightwave Technol. 24(11), 4329–4336 (2006)

    Article  Google Scholar 

  35. C. Bariain, I.R. Matı́as, F.J. Arregui, M. Lopez-Amo, Optical fiber humidity sensor based on a tapered fiber coated with agarose gel. Sens. Actuators B: Chem. 69(1), 127–131 (2000)

    Article  Google Scholar 

  36. J. Ascorbe, J.M. Corres, F.J. Arregui, I.R. Matias, Optical fiber humidity sensor based on a tapered fiber asymmetrically coated with indium tin oxide, in Sensors, 2014 IEEE (IEEE, 2014), pp. 1916–1919

    Google Scholar 

  37. J. Ascorbe, J.M. Corres, I.R. Mat, F.J. Arregui, Humidity sensor based on lossy mode resonances on an etched single mode fiber, in 2015 9th International Conference on Sensing Technology (ICST) (IEEE, 2015), pp. 365–368

    Google Scholar 

  38. H.S. Haddock, P.M. Shankar, R. Mutharasan, Fabrication of biconical tapered optical fibers using hydrofluoric acid. Mater. Sci. Eng., B 97(1), 87–93 (2003)

    Article  Google Scholar 

  39. H.J. Kbashi, Fabrication of submicron-diameter and taper fibers using chemical etching. J. Mater. Sci. Technol. 28(4), 308–312 (2012)

    Article  Google Scholar 

  40. S$AB

    Google Scholar 

  41. R.A. Becker, Traveling-wave electro-optic modulator with maximum bandwidth-length product. Appl. Phys. Lett. 45(11), 1168–1170 (1984)

    Article  Google Scholar 

  42. N. Liu, M. Hu, H. Sun, T. Gang, Z. Yang, Q. Rong, X. Qiao, A fiber-optic refractometer for humidity measurements using an in-fiber Mach-Zehnder interferometer. Opt. Commun. 367, 1–5 (2016)

    Article  Google Scholar 

  43. Q. Wang, W. Wei, M. Guo, Y. Zhao, Optimization of cascaded fiber tapered Mach-Zehnder interferometer and refractive index sensing technology. Sens. Actuators B: Chem. 222, 159–165 (2016)

    Article  Google Scholar 

  44. G. Hernández, Fabry-Pèrot Interferometers, vol 3 (Cambridge University Press, 1988)

    Google Scholar 

  45. X. Chen, F. Shen, Z. Wang, Z. Huang, A. Wang, Micro-air-gap based intrinsic Fabry-Pèrot interferometric fiber-optic sensor. Appl. Opt. 45(30), 7760–7766 (2006)

    Article  Google Scholar 

  46. J. Wang, B. Dong, E. Lally, J. Gong, M. Han, A. Wang, Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Pèrot interferometers. Opt. Lett. 35(5), 619–621 (2010)

    Article  Google Scholar 

  47. L.H. Chen, T. Li, C.C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X.M. Ang, P. Zu, W.C. Wong, K.C. Leong, Chitosan based fiber-optic Fabry-Pèrot humidity sensor. Sens. Actuators B: Chem. 169, 167–172 (2012)

    Article  Google Scholar 

  48. J. Goicoechea, C.R. Zamarreño, I.R. Matias, F.J. Arregui, Utilization of white light interferometry in pH sensing applications by mean of the fabrication of nanostructured cavities. Sens. Actuators B: Chem. 138(2), 613–618 (2009)

    Article  Google Scholar 

  49. J. Goicoechea, C.R. Zamarreño, I.R. Matías, F.J. Arregui, Study on white light optical fiber interferometry for pH sensor applications, in Sensors, 2007 IEEE (IEEE, 2007), pp. 399–402

    Google Scholar 

  50. F.J. Arregui, Y. Liu, I.R. Matias, R.O. Claus, Optical fiber humidity sensor using a nano Fabry-Pèrot cavity formed by the ionic self-assembly method. Sens. Actuators B: Chem. 59(1), 54–59 (1999)

    Article  Google Scholar 

  51. W. Xie, M. Yang, Y. Cheng, D. Li, Y. Zhang, Z. Zhuang, Optical fiber relative-humidity sensor with evaporated dielectric coatings on fiber end-face. Opt. Fiber Technol. 20(4), 314–319 (2014)

    Article  Google Scholar 

  52. J. Ascorbe, C. Sanz, J.M. Corres, F.J. Arregui, I.R. Mat, S.C. Mukhopadhyay, High sensitivity extrinsic Fabry-Pèrot interferometer for humidity sensing, in 2015 9th International Conference on Sensing Technology (ICST) (IEEE, 2015), pp. 143–146

    Google Scholar 

  53. B.C. Yadav, N.K. Pandey, A.K. Srivastava, P. Sharma, Optical humidity sensors based on titania films fabricated by sol–gel and thermal evaporation methods. Meas. Sci. Technol. 18(1), 260 (2006)

    Article  Google Scholar 

  54. G.W. Bundrett, Criteria of Moisture Control (London, Butterworths, 1990), p 19

    Google Scholar 

  55. T. Morimoto, M. Nagao, F. Tokuda, The relation between the amounts of chemisorbed and physisorbed water on metal oxides. J. Phys. Chem. 73, 243–248 (1969)

    Article  Google Scholar 

  56. T. King, Water, Miracle of Nature (Macmillan, New York, 1953)

    Google Scholar 

  57. W.M. Sears, The effect of oxygen stoichiometry on the humidity sensing characteristics of bismuth iron molybdate. Sens. Actuators B: Chem. 67(1), 161–172 (2000)

    Article  Google Scholar 

  58. P.M. Faia, C.S. Furtado, Effect of composition on electrical response to humidity of TiO 2: ZnO sensors investigated by impedance spectroscopy. Sens. Actuators B: Chem. 181, 720–729 (2013)

    Article  Google Scholar 

  59. N. Barsan, R. Grigorovici, R. Ionescu, M. Motronea, A. Vancu, Mechanism of gas detection in polycrystalline thick film SnO 2 sensors. Thin Solid Films 171(1), 53–63 (1989)

    Article  Google Scholar 

  60. J. Lemaire, R.M. Atkins, V. Mizrahi, K.L. Walker, K.S. Kranz, W.A. Reed, High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers. Electron. Lett. 29, 1191–1193 (1993)

    Article  Google Scholar 

  61. T. Erdogan, Cladding-mode resonances in short-and long-period fiber grating filters. JOSA A 14(8), 1760–1773 (1997)

    Article  Google Scholar 

  62. N. Godbout, X. Daxhelet, A. Maurier, S. Lacroix, Long-period fiber grating by electrical discharge, in Proceedings of ECOC’98, pp. 397–398

    Google Scholar 

  63. V.I. Karpov, M.V. Grekov, E.M. Dianov, K.M. Golant, S.A. Vasiliev, O.I. Medvedkov, R.R. Khrapko, Mode-field converters and long-period gratings fabricated by thermo-diffusion in nitrogen-doped silica-core fibers, in Optical Fiber Communication Conference and Exhibit, 1998. OFC’98., Technical Digest (IEEE, 1988), pp. 279–280

    Google Scholar 

  64. E.M. Dianov, V.I. Karpov, M.V. Grekov, K.M. Golant, R.R. Khrapko, Ultra-thermostable long-period gratings induced in nitrogen-doped silica fiber, in ECOC’97 Technical Digest, pp. 2–56

    Google Scholar 

  65. D.D. Davis, T.K. Gaylord, E.N. Glytsis, S.G. Kosinski, S.C. Mettler, A.M. Vengsarkar, Long-period fibre grating fabrication with focused CO2 laser pulses. Electron. Lett. 34(3), 302–303 (1998)

    Article  Google Scholar 

  66. M. Fujimaki, Y. Ohki, J.L. Brebner, S. Roorda, Fabrication of long-period optical fiber gratings by use of ion implantation. Opt. Lett. 25, 88–89 (2000)

    Article  Google Scholar 

  67. S.G. Kosinski, A.M. Vengsarkar, Splice- based long-period fiber gratings, in OFC’98 Technical Digest, paper ThG3, pp. 278–279

    Google Scholar 

  68. G. Rego, O. Okhotnikov, E. Dianov, V. Sulimov, High-temperature stability of long-period fiber gratings produced using an electric arc. J.Lightwave Technol. 19(10), 1574–1579 (2001)

    Article  Google Scholar 

  69. M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, N.A. Vainos, Optical fiber long-period grating humidity sensor with poly (ethylene oxide)/cobalt chloride coating. Appl. Opt. 45(19), 4567–4571 (2006)

    Article  Google Scholar 

  70. Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, Y. Liao, Long-period grating relative humidity sensor with hydrogel coating. IEEE Photon. Technol. Lett. 19(12), 880–882 (2007)

    Article  Google Scholar 

  71. T. Venugopalan, T.L. Yeo, T. Sun, K.T. Grattan, LPG-based PVA coated sensor for relative humidity measurement. Sens. J., IEEE 8(7), 1093–1098 (2008)

    Article  Google Scholar 

  72. S. Korposh, S.W. James, S.W. Lee, S. Topliss, S.C. Cheung, W.J. Batty, R.P. Tatam, Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO 2 nanoparticles. Opt. Express 18(12), 13227–13238 (2010)

    Article  Google Scholar 

  73. D. Viegas, J. Goicoechea, J.M. Corres, J.L. Santos, L.A. Ferreira, F.M. Araújo, I.R. Matias, A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO2 nanospheres. Meas. Sci. Technol. 20(3), 034002 (2009)

    Article  Google Scholar 

  74. A. Urrutia, J. Goicoechea, A.L. Ricchiuti, D. Barrera, S. Sales, F.J. Arregui, Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating. Sens. Actuators B: Chem. 227, 135–141 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Corres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ascorbe, J., Corres, J., Arregui, F.J., Matias, I.R., Mukhopadhyay, S.C. (2017). High Sensitivity Optical Structures for Relative Humidity Sensing. In: Mukhopadhyay, S., Postolache, O., Jayasundera, K., Swain, A. (eds) Sensors for Everyday Life. Smart Sensors, Measurement and Instrumentation, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-47322-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47322-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47321-5

  • Online ISBN: 978-3-319-47322-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics