Skip to main content

Bond-Graph Modelling and Causal Analysis of Biomolecular Systems

  • Chapter
  • First Online:

Abstract

Bond graph modelling of the biomolecular systems of living organisms is introduced. Molecular species are represented by non-linear C components and reactions by non-linear two-port R components. As living systems are neither at thermodynamic equilibrium nor closed, open and non-equilibrium systems are considered and illustrated using examples of biomolecular systems. Open systems are modelled using chemostats: chemical species with fixed concentration. In addition to their role in ensuring that models are energetically correct, bond graphs provide a powerful and natural way of representing and analysing causality. Causality is used in this chapter to examine the properties of the junction structures of biomolecular systems and how they relate to biomolecular concepts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This was pointed out to me by the Editor of this volume, Wolfgang Borutzky.

  2. 2.

    In this context, a moiety is a part of a molecule; in some reactions, such moieties are conserved across different molecules.

  3. 3.

    The standard notation would be x A but this clashes with our bond graph notation.

  4. 4.

    Other extensive quantities such as internal energy, entropy, Gibbs energy also have molar versions.

  5. 5.

    Michael Pan, private communication.

  6. 6.

    SCAP is used for all the examples in this chapter. Unless otherwise stated, all C components have integral causality.

  7. 7.

    TF components representing reaction stoichiometry also occur—see example in Sect. 16.5.

  8. 8.

    ATP (Adenosine triphosphate) is the “fuel” which drives many biomolecular processes via its conversion to ADP (Adenosine diphosphate) and P inorganic phosphate [1].

  9. 9.

    The SS component is equivalent to the EN (environment) component introduced by Rosenberg and Andry [37].

  10. 10.

    The term chemostat was used by Polettini and Esposito [35] and is equivalent to the “concentration clamping” of Qian and Beard [36].

  11. 11.

    The term flowstat is equivalent to “boundary flux injection” [36].

  12. 12.

    A protein molecule with a given chemical composition may have many different geometric “shapes” or conformations with different Gibbs energy—this is the basis of much cell biology [1].

  13. 13.

    NADH (reduced nicotinamide adenine dinucleotide) is an electron transporter within biomolecular processes [1].

References

  1. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., et al. (Eds.). (2015). Molecular biology of the cell (6th ed.). Abingdon: Garland Science.

    Google Scholar 

  2. Alon, U. (2007). Introduction to systems biology: Design principles of biological networks. Boca Raton: CRC Press.

    Google Scholar 

  3. Atkins, P., & de Paula, J. (2011). Physical chemistry for the life sciences (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  4. Beard, D. A. (2012). Biosimulation: Simulation of living systems. Cambridge: Cambridge University Press. ISBN: 978-0-521-76823-8.

    Book  Google Scholar 

  5. Beard, D. A., & Qian, H. (2010). Chemical biophysics: Quantitative analysis of cellular systems. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  6. Breedveld, P. C. (1982). Thermodynamic bond graphs and the problem of thermal inertance. Journal of the Franklin Institute, 314(1), 15–40. ISSN: 0016-0032. doi:10.1016/0016-0032(82)90050-3.

  7. Cellier, F. E. (1991). Continuous system modelling. New York: Springer.

    Book  MATH  Google Scholar 

  8. Cloutier, M., Bolger, F. B., Lowry J. P., & Wellstead P. (2009). An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements. Journal of Computational Neuroscience, 27(3), 391–414. ISSN: 0929-5313. doi:10.1007/s10827-009-0152-8.

  9. Fuchs, H. U. (1996). The dynamics of heat. New York: Springer.

    Book  MATH  Google Scholar 

  10. Gawthrop, P. J., & Bevan, G. P. (2007). Bond-graph modeling: A tutorial introduction for control engineers. IEEE Control Systems Magazine, 27(2), 24–45. doi:10.1109/MCS.2007.338279.

    Article  MathSciNet  Google Scholar 

  11. Gawthrop, P. J., & Crampin, E. J. (2014). Energy-based analysis of biochemical cycles using bond graphs. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 470(2171), 1–25. doi:10.1098/rspa.2014.0459. Available at arXiv:1406.2447.

  12. Gawthrop, P. J., & Crampin, E. J. (2016). Modular bond-graph modelling and analysis of biomolecular systems. IET Systems Biology, 10, 2016. ISSN: 1751-8849. doi:10.1049/iet-syb.2015.0083. Available at arXiv:1511.06482.

  13. Gawthrop, P. J., Cursons, J., & Crampin, E. J. (2015). Hierarchical bond graph modelling of biochemical networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2184), 1–23. ISSN: 1364-5021. doi:10.1098/rspa.2015.0642. Available at arXiv:1503.01814.

  14. Gawthrop, P. J., & Smith, L. (1992). Causal augmentation of bond graphs with algebraic loops. Journal of the Franklin Institute, 329(2), 291–303. doi:10.1016/0016-0032(92)90035-F.

    Article  Google Scholar 

  15. Gawthrop, P. J., & Smith, L. P. S. (1996). Metamodelling: Bond graphs and dynamic systems. Hemel Hempstead: Prentice Hall. ISBN: 0-13-489824-9.

    Google Scholar 

  16. Greifeneder, J., & Cellier, F. E. (2012). Modeling chemical reactions using bond graphs. In Proceedings ICBGM12, 10th SCS International Conference on Bond Graph Modeling and Simulation, Genoa, Italy (pp. 110–121).

    Google Scholar 

  17. Hill, T. L. (1989). Free energy transduction and biochemical cycle kinetics. New York: Springer.

    Book  Google Scholar 

  18. Jamshidi, N., & Palsson, B. (2010). Mass action stoichiometric simulation models: Incorporating kinetics and regulation into stoichiometric models. Biophysical Journal, 98(2), 175–185. ISSN: 0006-3495. doi:10.1016/j.bpj.2009.09.064.

  19. Job, G., & Herrmann, F. (2006). Chemical potential – A quantity in search of recognition. European Journal of Physics, 27(2), 353–371 (2006). doi:10.1088/0143-0807/27/2/018.

  20. Karnopp, D. (1990). Bond graph models for electrochemical energy storage: Electrical, chemical and thermal effects. Journal of the Franklin Institute, 327(6), 983–992. ISSN: 0016-0032. doi:10.1016/0016-0032(90)90073-R.

  21. Karnopp, D. C., Margolis, D. L., & Rosenberg, R. C. (2012). System dynamics: Modeling, simulation, and control of mechatronic systems (5th ed.). New York: Wiley. ISBN: 978-0470889084.

    Book  Google Scholar 

  22. Klipp, E., Liebermeister, W., Wierling, C., Kowald, A., Lehrach, H., & Herwig, R. (2011). Systems biology. Weinheim: Wiley.

    Google Scholar 

  23. Lambeth, M. J., & Kushmerick, M. J. (2002). A computational model for glycogenolysis in skeletal muscle. Annals of Biomedical Engineering, 30(6), 808–827. ISSN: 0090-6964. doi:10.1114/1.1492813.

  24. Maxwell, J. C. (1871). Remarks on the mathematical classification of physical quantities. Proceedings London Mathematical Society, 3, 224–233.

    Google Scholar 

  25. Mukherjee, A., Karmaker, R., & Samantaray, A. K. (2006). Bond graph in modeling, simulation and fault identification. New Delhi: I.K. International.

    Google Scholar 

  26. Ort, J. R., & Martens, H. R. (1973). The properties of bond graph junction structure matrices. Journal of Dynamic Systems, Measurement, and Control, 95, 362–367. ISSN: 0022-0434. doi:10.1115/1.3426736.

  27. Oster, G., & Perelson, A. (1974). Chemical reaction networks. IEEE Transactions on Circuits and Systems, 21(6), 709–721. ISSN: 0098-4094. doi:10.1109/TCS.1974.1083946.

  28. Oster, G., Perelson, A., & Katchalsky, A. (1971). Network thermodynamics. Nature, 234, 393–399. doi:10.1038/234393a0.

    Article  Google Scholar 

  29. Oster, G. F., Perelson, A. S., & Katchalsky, A. (1973). Network thermodynamics: Dynamic modelling of biophysical systems. Quarterly Reviews of Biophysics, 6(01), 1–134 doi:10.1017/S0033583500000081.

    Article  Google Scholar 

  30. Palsson, B. (2006). Systems biology: Properties of reconstructed networks. Cambridge: Cambridge University Press. ISBN: 0521859034.

    Book  Google Scholar 

  31. Palsson, B. (2011). Systems biology: Simulation of dynamic network states. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  32. Paynter, H. M. (1961). Analysis and design of engineering systems. Cambridge: MIT Press.

    Google Scholar 

  33. Paynter, H. M. (1993). Preface. In J. J. Granda & F. E. Cellier (Eds.), Proceedings of the International Conference On Bond Graph Modeling (ICBGM’93). Simulation Series, La Jolla, CA, USA, January 1993 (Vol. 25). Society for Computer Simulation. ISBN: 1-56555-019-6.

    Google Scholar 

  34. Perelson, A. S. (1975). Bond graph junction structures. Journal of Dynamic Systems, Measurement, and Control, 97, 189–195. ISSN: 0022-0434. doi:10.1115/1.3426901.

  35. Polettini, M., & Esposito, M. (2014). Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws. The Journal of Chemical Physics, 141(2), 024117 doi:10.1063/1.4886396.

  36. Qian, H., & Beard, D. A. (2005). Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. Biophysical Chemistry, 114(2–3), 213–220. ISSN: 0301-4622. doi:10.1016/j.bpc.2004.12.001.

  37. Rosenberg, R. C., & Andry, A. N. (1979). Solvability of bond graph junction structures with loops. IEEE Transactions on Circuits and Systems, 26(2), 130–137. ISSN: 0098-4094. doi:10.1109/TCS.1979.1084615.

  38. Sueur, C., & Dauphin-Tanguy, G. (1989). Structural controllability/observability of linear systems represented by bond graphs. Journal of the Franklin Institute, 326, 869–883.

    Article  MathSciNet  MATH  Google Scholar 

  39. Sueur, C., & Dauphin-Tanguy, G. (1991). Bond-graph approach for structural analysis of MIMO linear systems. Journal of the Franklin Institute, 328, 55–70.

    Article  MathSciNet  MATH  Google Scholar 

  40. Sueur, C., & Dauphin-Tanguy, G. (1997). Controllability indices for structured systems. Linear Algebra and its Applications, 250, 275–287.

    Article  MathSciNet  MATH  Google Scholar 

  41. Thoma, J. U., & Atlan, H. (1977). Network thermodynamics with entropy stripping. Journal of the Franklin Institute, 303(4), 319–328. ISSN: 0016-0032. doi:10.1016/0016-0032(77)90114-4.

  42. Thoma, J. U., & Mocellin, G. (2006). Simulation with entropy thermodynamics: Understanding matter and systems with bondgraphs. Heidelberg: Springer. ISBN: 978-3-540-32798-1.

    MATH  Google Scholar 

  43. Van Rysselberghe, P. (1958). Reaction rates and affinities. The Journal of Chemical Physics, 29(3), 640–642. doi:10.1063/1.1744552.

    Article  Google Scholar 

  44. Wellstead, P. E. (1979). Introduction to physical system modelling. Academic Press: New York.

    Google Scholar 

Download references

Acknowledgements

Peter Gawthrop would like to thank the Melbourne School of Engineering for its support via a Professorial Fellowship. He would also like to thank Michael Pan and Joe Cursons for their close reading of the draft chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Gawthrop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gawthrop, P.J. (2017). Bond-Graph Modelling and Causal Analysis of Biomolecular Systems. In: Borutzky, W. (eds) Bond Graphs for Modelling, Control and Fault Diagnosis of Engineering Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-47434-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47434-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47433-5

  • Online ISBN: 978-3-319-47434-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics