Skip to main content

Abstract

The advent of three dimensional data collection, grain reconstruction, and subsequent materials analysis has created opportunities to revisit problems in grain growth and polycrystalline structure. In this paper we review the relevant literature concerning the total number of polyhedral grains of a given number of faces and take the additional first steps at enumerating the topologies of the members within each set. Analysis of the dispersion in topology relative to the idealized N-hedra is presented. The relevance to grain growth simulations and experiments is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. Federico, “The number of polyhedra,” Philips Research Reports, 30 (1975) 220–231.

    Google Scholar 

  2. A. J. W. Duijvestijn and P. J. Federico, “The number of polyhedral (3-connected planar) graphs,” Mathematics of Computation, 37 (1981) 523–532.

    Google Scholar 

  3. P. Engel, “On the enumeration of the simple 3-polyhedra,” Acta Crystallographica Section A, 59 (2003) 14–17.

    Google Scholar 

  4. C. S. Smith, “Grain shapes and other metallurgical applications of topology,” in “Metal Interfaces,” pages 65–118, 1952.

    Google Scholar 

  5. W. M. Williams and C. S. Smith, “A study of grain shape in an aluminum alloy and other applications of stereoscopic microradiography,” Transactions of the American Institute of Mining and Metallurgical Engineers, 194 (1952) 755–765.

    Google Scholar 

  6. W. Thomson, “On the division of space with minimum partitional area,” Philosophical Magazine, 24 (1887) 503.

    Article  Google Scholar 

  7. M. E. Glicksman, “Analysis of 3-D network structures,” Philosophical Magazine, 85 (2005) 3–31.

    Article  Google Scholar 

  8. D. J. Rowenhorst, A. C. Lewis, and G. Spanos, “Three-dimensional analysis of grain topology and interface curvature in a β-titanium alloy,” Acta Materialia, 58 (2010) 5511–5519.

    Article  Google Scholar 

  9. Y. Suwa, Y. Saito, and H. Onodera, “Parallel computer simulation of three-dimensional grain growth using the multi-phase-field model,” Materials Transactions, 49 (2008) 704–709.

    Article  Google Scholar 

  10. M. Elsey, S. Esedoḡlu, and P. Smereka, “Large-scale simulation of normal grain growth via diffusion-generated motion,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 467 (2011) 381–401.

    Article  Google Scholar 

  11. E. A. Lazar, J. K. Mason, R. D. MacPherson, and D. J. Srolovitz, “A more accurate three-dimensional grain growth algorithm,” Acta Materialia, 59 (2011) 6837–6847.

    Article  Google Scholar 

  12. A. J. W. Duijvestijn, “List of 3-connected planar graphs with 6 to 22 edges,” 1979, unpublished computer tape, Twente University of Technology, Enschede, The Netherlands.

    Google Scholar 

  13. Y. L. Voytekhovsky and D. G. Stepenshchikov, “On the symmetry of simple 14-and 15-hedra,” Acta Crystallographica Section A, 59 (2003) 367–370.

    Article  Google Scholar 

  14. Y. L. Voytekhovsky and D. G. Stepenshchikov, “On the symmetry of simple 16-hedra,” Acta Crystallographica Section A, 62 (2006) 230–232.

    Article  Google Scholar 

  15. J. A. F. Plateau, Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Mol´ecularies, Paris: Gauthier-Villars, 1873.

    Google Scholar 

  16. E. A. Lazar, The Evolution of Cellular Structures via Curvature Flow, Ph.D. thesis, Princeton University, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Keller, T., Cutler, B., Glicksman, M., Lewis, D. (2012). Enumeration of Polyhedra for Grain Growth Analysis. In: De Graef, M., Poulsen, H.F., Lewis, A., Simmons, J., Spanos, G. (eds) Proceedings of the 1st International Conference on 3D Materials Science. Springer, Cham. https://doi.org/10.1007/978-3-319-48762-5_15

Download citation

Publish with us

Policies and ethics