Skip to main content

Balance Control in Older Adults

  • Chapter
  • First Online:
Locomotion and Posture in Older Adults

Abstract

To avoid falls during everyday movements, we need to maintain balance, i.e., control the position of our body’s center of mass relative to our base of support. The balance control system comprises sensory subsystems, their afferent nerves, an extensive brain network, and the motor system. Physiological aging of each of these subsystems may limit our ability to control balance in standing and walking. Methods based on questionnaires, functional tests of posture and movement, and advanced methods that quantify the ability to control or regain balance or the performance of specific subsystems of the balance control system are available to test balance control in older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lord SR, Sherrington C, Menz HB. Falls in older people: risk factors and strategies for prevention. 2nd ed. Cambridge: Cambridge University Press; 2001.

    Google Scholar 

  2. WHO. WHO global report on falls prevention in older age. Geneva: WHO Press; 2007. P. 1–7, 47.

    Google Scholar 

  3. Robinovitch SN, Feldman F, Yang Y, Schonnop R, Leung PM, Sarraf T, et al. Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. Lancet. 2013;381(9860):47–54.

    Article  PubMed  Google Scholar 

  4. Kelsey JL, Berry SD, Procter-Gray E, Quach L, Nguyen US, Li W, et al. Indoor and outdoor falls in older adults are different: the maintenance of balance, independent living, intellect, and Zest in the Elderly of Boston Study. J Am Geriatr Soc. 2010;58(11):2135–41.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hof AL. The equations of motion for a standing human reveal three mechanisms for balance. J Biomech. 2007;40:451–7.

    Article  PubMed  Google Scholar 

  6. Loram ID, Lakie M. Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability. J Physiol. 2002;545:1041–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Iles JF, Baderin R, Tanner R, Simon A. Human standing and walking: comparison of the effects of stimulation of the vestibular system. Exp Brain Res. 2007;178(2):151–66.

    Article  PubMed  Google Scholar 

  8. Sturnieks DL, St George R, Lord SR. Balance disorders in the elderly. Neurophysiol Clin. 2008;38(6):467–78.

    Article  CAS  PubMed  Google Scholar 

  9. St George RJ, Fitzpatrick RC. The sense of self-motion, orientation and balance explored by vestibular stimulation. J Physiol. 2011;589:807–13.

    Article  CAS  PubMed  Google Scholar 

  10. Paulus WM, Straube A, Brandt T. Visual stabilization of posture. Physiological stimulus characteristics and clinical aspects. Brain. 1984;107(Pt 4):1143–63.

    Article  PubMed  Google Scholar 

  11. Redfern M, Yardley L, Bronstein A. Visual influences on balance. J Anxiety Disord. 2001;15:81–94.

    Article  CAS  PubMed  Google Scholar 

  12. Lord SR, Dayhew J, Howland A. Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people. J Am Geriatr Soc. 2002;50(11):1760–6.

    Article  PubMed  Google Scholar 

  13. Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev. 2012;92(4):1651–97.

    Article  CAS  PubMed  Google Scholar 

  14. Courtine G, De Nunzio AM, Schmid M, Beretta MV, Schieppati M. Stance- and locomotion-dependent processing of vibration-induced proprioceptive inflow from multiple muscles in humans. J Neurophysiol. 2007;97(1):772–9.

    Article  PubMed  Google Scholar 

  15. Son J, Ashton-Miller JA, Richardson JK. Frontal plane ankle proprioceptive thresholds and unipedal balance. Muscle Nerve. 2009;39(2):150–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Roden-Reynolds DC, Walker MH, Wasserman CR, Dean JC. Hip proprioceptive feedback influences the control of mediolateral stability during human walking. J Neurophysiol. 2015;114(4):2220–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shaffer SW, Harrison AL. Aging of the somatosensory system: a translational perspective. Phys Ther. 2007;87(2):193–207.

    Article  PubMed  Google Scholar 

  18. Cofre Lizama LE, Pijnappels M, Verschueren S, Reeves NP, van Dieën JH. Can explicit visual feedback of postural sway efface the effects of sensory manipulations on mediolateral balance performance? J Neurophysiol. 2016;115:907–14.

    Article  PubMed  Google Scholar 

  19. Jeka JJ. Light touch contact as a balance aid. Phys Ther. 1997;77(5):476–87.

    Article  CAS  PubMed  Google Scholar 

  20. Welch TD, Ting LH. Mechanisms of motor adaptation in reactive balance control. PLoS One. 2014;9(5), e96440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Manzoni D. The cerebellum may implement the appropriate coupling of sensory inputs and motor responses: evidence from vestibular physiology. Cerebellum. 2005;4(3):178–88.

    Article  CAS  PubMed  Google Scholar 

  22. van Dieen J, de Looze M. Directionality of anticipatory activation of trunk muscles in a lifting task depends on load knowledge. Exp Brain Res. 1999;128(3):397–404.

    Article  PubMed  Google Scholar 

  23. Jacobs JV, Lou JS, Kraakevik JA, Horak FB. The supplementary motor area contributes to the timing of the anticipatory postural adjustment during step initiation in participants with and without Parkinson's disease. Neuroscience. 2009;164(2):877–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moraes R, Lewis MA, Patla AE. Strategies and determinants for selection of alternate foot placement during human locomotion: influence of spatial and temporal constraints. Exp Brain Res. 2004;159(1):1–13.

    PubMed  Google Scholar 

  25. Hesse C, Lane AR, Aimola L, Schenk T. Pathways involved in human conscious vision contribute to obstacle-avoidance behaviour. Eur J Neurosci. 2012;36(3):2383–90.

    Article  PubMed  Google Scholar 

  26. Patla AE, Goodale MA. Obstacle avoidance during locomotion is unaffected in a patient with visual form agnosia. Neuroreport. 1996;8:165–8.

    Article  CAS  PubMed  Google Scholar 

  27. Weerdesteyn V, Nienhuis B, Hampsink B, Duysens J. Gait adjustments in response to an obstacle are faster than voluntary reactions. Hum Mov Sci. 2004;23(3–4):351–63.

    Article  CAS  PubMed  Google Scholar 

  28. Jacobs JV, Horak FB. Cortical control of postural responses. J Neural Transm (Vienna). 2007;114(10):1339–48.

    Article  CAS  Google Scholar 

  29. Bruijn SM, van Dieën JH, Daffertshofer A. Beta activity in the premotor cortex is increased during stabilized as compared to normal walking. Front Hum Neurosci. 2015;9:593.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sullivan EV, Deshmukh A, Desmond JE, Lim KO, Pfefferbaum A. Cerebellar volume decline in normal aging, alcoholism, and Korsakoff's syndrome: relation to ataxia. Neuropsychology. 2000;14(3):341–52.

    Article  CAS  PubMed  Google Scholar 

  31. Wiesmeier IK, Dalin D, Maurer C. Elderly use proprioception rather than visual and vestibular cues for postural motor control. Front Aging Neurosci. 2015;7:97.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Eikema DJ, Hatzitaki V, Tzovaras D, Papaxanthis C. Age-dependent modulation of sensory reweighting for controlling posture in a dynamic virtual environment. Age (Dordr). 2012;34(6):1381–92.

    Article  Google Scholar 

  33. Papegaaij S, Taube W, Baudry S, Otten E, Hortobagyi T. Aging causes a reorganization of cortical and spinal control of posture. Front Aging Neurosci. 2014;6:28.

    PubMed  PubMed Central  Google Scholar 

  34. Pijnappels M, Bobbert MF, van Dieën JH. Control of support limb muscles in recovery after tripping in young and older subjects. Exp Brain Res. 2005;160(3):326–33.

    Article  PubMed  Google Scholar 

  35. van der Burg JC, Pijnappels M, van Dieën JH. Out-of-plane trunk movements and trunk muscle activity after a trip during walking. Exp Brain Res. 2005;165(3):407–12.

    Google Scholar 

  36. Pijnappels M, Kingma I, Wezenberg D, Reurink G, van Dieen JH. Armed against falls: the contribution of arm movements to balance recovery after tripping. Exp Brain Res. 2010;201(4):689–99.

    Article  PubMed  Google Scholar 

  37. Winter DA, Prince F, Frank JS, Powell C, Zabjek KF. Unified theory regarding A/P and M/L balance in quiet stance. J Neurophysiol. 1996;75(6):2334–43.

    CAS  PubMed  Google Scholar 

  38. Allet L, Kim H, Ashton-Miller J, De Mott T, Richardson JK. Frontal plane hip and ankle sensorimotor function, not age, predicts unipedal stance time. Muscle Nerve. 2012;45(4):578–85.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim M, Collins SH. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking. J Neuroeng Rehabil. 2015;12:43.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rankin BL, Buffo SK, Dean JC. A neuromechanical strategy for mediolateral foot placement in walking humans. J Neurophysiol. 2014;112(2):374–83.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Toebes MJ, Hoozemans MJM, Dekker J, van Dieen JH. Associations between measures of gait stability, leg strength and fear of falling. Gait Posture. 2015;41:76–80.

    Article  PubMed  Google Scholar 

  42. Granacher U, Gollhofer A, Hortobagyi T, Kressig RW, Muehlbauer T. The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors: a systematic review. Sports Med. 2013;43(7):627–41.

    Article  PubMed  Google Scholar 

  43. Thelen DG, Schultz AB, Alexander NB, Ashton-Miller JA. Effects of age on rapid ankle torque development. J Gerontol A Biol Sci Med Sci. 1996;51(5):M226–32.

    Article  CAS  PubMed  Google Scholar 

  44. Reeves ND, Narici MV, Maganaris CN. Myotendinous plasticity to ageing and resistance exercise in humans. Exp Physiol. 2006;91(3):483–98.

    Article  CAS  PubMed  Google Scholar 

  45. Pijnappels M, van der Burg PJ, Reeves ND, van Dieen JH. Identification of elderly fallers by muscle strength measures. Eur J Appl Physiol. 2008;102(5):585–92.

    Article  PubMed  Google Scholar 

  46. Enoka RM, Christou EA, Hunter SK, Kornatz KW, Semmler JG, Taylor AM, et al. Mechanisms that contribute to differences in motor performance between young and old adults. J Electromyogr Kinesiol. 2003;13(1):1–12.

    Article  PubMed  Google Scholar 

  47. Carville SF, Perry MC, Rutherford OM, Smith IC, Newham DJ. Steadiness of quadriceps contractions in young and older adults with and without a history of falling. Eur J Appl Physiol. 2007;100(5):527–33.

    Article  PubMed  Google Scholar 

  48. Houdijk H, Brown S, van Dieen JH. The relation between postural sway magnitude and metabolic energy cost during upright standing on a compliant surface. J Appl Physiol. 2015;119:696–703.

    Article  CAS  PubMed  Google Scholar 

  49. Carpenter MG, Murnaghan CD, Inglis JT. Shifting the balance: evidence of an exploratory role for postural sway. Neuroscience. 2010;171(1):196–204.

    Article  CAS  PubMed  Google Scholar 

  50. Pasma JH, Bijlsma AY, van der Bij MD, Arendzen JH, Meskers CG, Maier AB. Age-related differences in quality of standing balance using a composite score. Gerontology. 2014;60(4):306–14.

    PubMed  Google Scholar 

  51. Choy NL, Brauer S, Nitz J. Changes in postural stability in women aged 20 to 80 years. J Gerontol A Biol Sci Med Sci. 2003;58(6):525–30.

    Article  PubMed  Google Scholar 

  52. van Wegen EEH, van Emmerik REA, Riccio GE. Postural orientation: age-related changes in variability and time-to-boundary. Hum Mov Sci. 2002;21(1):61–84.

    Article  PubMed  Google Scholar 

  53. Papegaaij S, Taube W, van Keeken HG, Otten E, Baudry S, Hortobagyi T. Postural challenge affects motor cortical activity in young and old adults. Exp Gerontol. 2016;73:78–85.

    Article  PubMed  Google Scholar 

  54. Pasma JH, Bijlsma AYJ, Klip JM, Stijntjes M, Blauw GJ, Muller M, et al. Blood pressure associates with standing balance in elderly outpatients. PLoS One. 2014;9, e106808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Stijntjes M, Pasma JH, van Vuuren M, Blauw GJ, Meskers CG, Maier AB. Low cognitive status is associated with a lower ability to maintain standing balance in elderly outpatients. Gerontology. 2015;61(2):124–30.

    Article  PubMed  Google Scholar 

  56. Bijlsma AY, Pasma JH, Lambers D, Stijntjes M, Blauw GJ, Meskers CG, et al. Muscle strength rather than muscle mass is associated with standing balance in elderly outpatients. J Am Med Dir Assoc. 2013;14:493–8.

    Article  PubMed  Google Scholar 

  57. Kouzaki M, Shinohara M. Steadiness in plantar flexor muscles and its relation to postural sway in young and elderly adults. Muscle Nerve. 2010;42(1):78–87.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gu M-J, Schultz AB, Shepard NT, Alexander NB. Postural control in young and elderly adults when stance is perturbed: dynamics. J Biomech. 1996;29(3):319–29.

    Article  CAS  PubMed  Google Scholar 

  59. Wu G. The relation between age-related changes in neuromusculoskeletal system and dynamic postural responses to balance disturbance. J Gerontol A Biol Sci Med Sci. 1998;53(4):M320–6.

    Article  CAS  PubMed  Google Scholar 

  60. Schulz BW, Ashton-Miller JA, Alexander NB. Compensatory stepping in response to waist pulls in balance-impaired and unimpaired women. Gait Posture. 2005;22(3):198–209.

    Article  PubMed  Google Scholar 

  61. McIlroy WE, Maki BE. Changes in early automatic postural responses associated with the prior-planning and execution of a compensatory step. Brain Res. 1993;631(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  62. Rijken NH, van Engelen BG, de Rooy JW, Geurts AC, Weerdesteyn V. Trunk muscle involvement is most critical for the loss of balance control in patients with facioscapulohumeral muscular dystrophy. Clin Biomech (Bristol, Avon). 2014;29(8):855–60.

    Google Scholar 

  63. Kuo AD. Stabilization of lateral motion in passive dynamic walking. Int J Rob Res. 1999;18(9):917–30.

    Article  Google Scholar 

  64. Bruijn SM, Meijer OG, Beek PJ, van Dieen JH. Assessing the stability of human locomotion: a review of current measures. J R Soc Interface. 2013;10(83):20120999.

    Google Scholar 

  65. Hamacher D, Singh NB, Van Dieen JH, Heller MO, Taylor WR. Kinematic measures for assessing gait stability in elderly individuals: a systematic review. J R Soc Interface. 2011;8(65):1682–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Toebes MJ, Hoozemans MJ, Furrer R, Dekker J, van Dieen JH. Local dynamic stability and variability of gait are associated with fall history in elderly subjects. Gait Posture. 2012;36(3):527–31.

    Article  PubMed  Google Scholar 

  67. van Schooten KS, Pijnappels M, Rispens SM, Elders P, Lips P, van Dieen JH. Ambulatory fall-risk assessment: amount and quality of daily-life gait predict falls in older adults. J Gerontol A Biol Sci Med Sci. 2015;70:608–15.

    Article  PubMed  Google Scholar 

  68. Hof AL, Gazendam MGJ, Sinke WE. The condition for dynamic stability. J Biomech. 2005;38(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  69. Arvin M, Mazaheri M, Pijinappels M, Hoozemans MJM, Burger BJ, Verschueren SM, et al. Effects of narrow base gait on mediolateral balance control in young and older adults. J Biomech. 2016;43:1264–7.

    Article  Google Scholar 

  70. Kang HG, Dingwell JB. Separating the effects of age and walking speed on gait variability. Gait Posture. 2008;27(4):572–7.

    Article  PubMed  Google Scholar 

  71. Bruijn SM, Van Impe A, Duysens J, Swinnen SP. White matter microstructural organization and gait stability in older adults. Front Aging Neurosci. 2014;6:104.

    Article  PubMed  PubMed Central  Google Scholar 

  72. van Dieën JH, Pijnappels M, Bobbert MF. Age-related intrinsic limitations in preventing a trip and regaining balance after a trip. Saf Sci. 2005;43(7):437–53.

    Article  Google Scholar 

  73. Patla AE, Prentice SD, Rietdyk S, Allard F, Martin C. What guides the selection of alternate foot placement during locomotion in humans. Exp Brain Res. 1999;128(4):441–50.

    Article  CAS  PubMed  Google Scholar 

  74. Weerdesteyn V, Nienhuis B, Mulder T, Duysens J. Older women strongly prefer stride lengthening to shortening in avoiding obstacles. Exp Brain Res. 2005;161(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  75. Moraes R, Allard F, Patla AE. Validating determinants for an alternate foot placement selection algorithm during human locomotion in cluttered terrain. J Neurophysiol. 2007;98:1928–40.

    Article  PubMed  Google Scholar 

  76. Chen HC, Ashton-Miller JA, Alexander NB, Schultz AB. Effects of age and available response time on ability to step over an obstacle. J Gerontol. 1994;49(5):M227–33.

    Article  CAS  PubMed  Google Scholar 

  77. Patla AE, Rietdyk S, Martin C, Prentice S. Locomotor patterns of the leading and the trailing limbs as solid and fragile obstacles are stepped over: some insights into the role of vision during locomotion. J Mot Behav. 1996;28:35–47.

    Article  PubMed  Google Scholar 

  78. Patla AE, Vickers JN. Where and when do we look as we approach and step over an obstacle in the travel path? Neuroreport. 1997;8:3661–5.

    Article  CAS  PubMed  Google Scholar 

  79. McFadyen BJ, Prince F. Avoidance and accommodation of surface height changes by healthy, community-dwelling, young, and elderly men. J Gerontol. 2002;57:B166–74.

    Article  Google Scholar 

  80. Persad CC, Giordani B, Chen HC, Ashton-Miller JA, Alexander NB, Wilson CS, et al. Neuropsychological predictors of complex obstacle avoidance in healthy older adults. J Gerontol B Psychol Sci Soc Sci. 1995;50(5):272–7.

    Article  Google Scholar 

  81. Chen HC, Schultz AB, Ashton-Miller JA, Giordani B, Alexander NB, Guire KE. Stepping over obstacles: dividing attention impairs performance of old more than young adults. J Gerontol A Biol Sci Med Sci. 1996;51(3):M116–22.

    Article  CAS  PubMed  Google Scholar 

  82. Eng JJ, Winter DA, Patla AE. Strategies for recovery from a trip in early and late swing during human walking. Exp Brain Res. 1994;102:339–49.

    Article  CAS  PubMed  Google Scholar 

  83. Pijnappels M, Bobbert MF, van Dieen JH. How early reactions in the support limb contribute to balance recovery after tripping. J Biomech. 2005;38(3):627–34.

    Article  PubMed  Google Scholar 

  84. Pijnappels M, Bobbert MF, van Dieen JH. Push-off reactions in recovery after tripping discriminate young subjects, older non-fallers and older fallers. Gait Posture. 2005;21(4):388–94.

    Article  PubMed  Google Scholar 

  85. Thelen DG, Muriuki M, James J, Schultz AB, Ashton-Miller JA, Alexander NB. Muscle activities used by young and old adults when stepping to regain balance during a forward fall. J Electromyogr Kinesiol. 2000;10(2):93–101.

    Article  CAS  PubMed  Google Scholar 

  86. Pavol MJ, Owings TM, Foley KT, Grabiner MD. Mechanisms leading to a fall from an induced trip in healthy older adults. J Gerontol A Biol Sci Med Sci. 2001;56(7):M428–37.

    Article  CAS  PubMed  Google Scholar 

  87. Pijnappels M, Bobbert MF, van Dieen JH. Contribution of the support limb in control of angular momentum after tripping. J Biomech. 2004;37(12):1811–8.

    Article  PubMed  Google Scholar 

  88. van der Burg JC, Pijnappels M, van Dieen JH. The influence of artificially increased trunk stiffness on the balance recovery after a trip. Gait Posture. 2007;26(2):272–8.

    Article  PubMed  Google Scholar 

  89. Mancini M, Horak FB. The relevance of clinical balance assessment tools to differentiate balance deficits. Eur J Phys Rehabil Med. 2010;46(2):239–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Schepens S, Sen A, Painter JA, Murphy SL. Relationship between fall-related efficacy and activity engagement in community-dwelling older adults: a meta-analytic review. Am J Occup Ther. 2012;66(2):137–48.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Yardley L, Beyer N, Hauer K, Kempen G, Piot-Ziegler C, Todd C. Development and initial validation of the Falls Efficacy Scale-International (FES-I). Age Ageing. 2005;34(6):614–9.

    Article  PubMed  Google Scholar 

  92. Kempen GI, Yardley L, van Haastregt JC, Zijlstra GA, Beyer N, Hauer K, et al. The short FES-I: a shortened version of the Falls Efficacy Scale-international to assess fear of falling. Age Ageing. 2008;37(1):45–50.

    Article  PubMed  Google Scholar 

  93. Delbaere K, Smith ST, Lord SR. Development and initial validation of the Iconographical Falls Efficacy Scale. J Gerontol A Biol Sci Med Sci. 2011;66(6):674–80.

    Article  PubMed  Google Scholar 

  94. Powell LE, Myers AM. The Activities-specific Balance Confidence (ABC) scale. J Gerontol A Biol Sci Med Sci. 1995;50A(1):M28–34.

    Article  CAS  PubMed  Google Scholar 

  95. Pasma JH, Engelhart D, Schouten AC, van der Kooij H, Maier AB, Meskers CG. Impaired standing balance: the clinical need for closing the loop. Neuroscience. 2014;267:157–65.

    Article  CAS  PubMed  Google Scholar 

  96. Huurnink A, Fransz DP, Kingma I, van Dieen JH. Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks. J Biomech. 2013;46(7):1392–5.

    Article  PubMed  Google Scholar 

  97. Pajala S, Era P, Koskenvuo M, Kaprio J, Tormakangas T, Rantanen T. Force platform balance measures as predictors of indoor and outdoor falls in community-dwelling women aged 63–76 years. J Gerontol A Biol Sci Med Sci. 2008;63(2):171–8.

    Article  PubMed  Google Scholar 

  98. Blaszczyk JW, Lowe DL, Hansen PD. Ranges of postural stability and their changes in the elderly. Gait Posture. 1994;2(1):11–7.

    Article  Google Scholar 

  99. Cofre Lizama LE, Pijnappels M, Rispens SM, Reeves NP, Verschueren SM, van Dieen JH. Mediolateral balance and gait stability in older adults. Gait Posture. 2015;42:79–84.

    Article  PubMed  Google Scholar 

  100. Arvin M, van Dieën JH, Faber GS, Pijnappels M, Hoozemans MJM, Verschueren SM. Hip abductor neuromuscular capacity: a limiting factor in mediolateral balance control in older adults? Clin Biomech. 2016;37:27–33.

    Article  Google Scholar 

  101. Sawers A, Ting LH. Beam walking can detect differences in walking balance proficiency across a range of sensorimotor abilities. Gait Posture. 2015;41(2):619–23.

    Article  PubMed  Google Scholar 

  102. Weerdesteyn V, Laing AC, Robinovitch SN. The body configuration at step contact critically determines the successfulness of balance recovery in response to large backward perturbations. Gait Posture. 2012;35(3):462–6.

    Article  PubMed  Google Scholar 

  103. Toebes MJ, Hoozemans MJM, Dekker J, van Dieen JH. Effects of unilateral leg muscle fatigue on balance control in perturbed and unperturbed gait in healthy elderly. Gait Posture. 2014;40:215–9.

    Article  PubMed  Google Scholar 

  104. Hilliard MJ, Martinez KM, Janssen I, Edwards B, Mille M-L, Zhang Y, et al. Lateral balance factors predict future falls in community-living older adults. Arch Phys Med Rehabil. 2008;89(9):1708–13.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sturnieks DL, Menant J, Delbaere K, Vanrenterghem J, Rogers MW, Fitzpatrick RC, et al. Force-controlled balance perturbations associated with falls in older people: a prospective cohort study. PLoS One. 2013;8(8), e70981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rabago CA, Dingwell JB, Wilken JM. Reliability and minimum detectable change of temporal-spatial, kinematic, and dynamic stability measures during perturbed gait. PLoS One. 2015;10(11):e0142083.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Tinetti ME. Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc. 1986;34(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  108. Berg K, Wood-Dauphinee S, Williams JI, Gayton D. Measuring balance in the elderly: preliminary development of an instrument. Physiother Can. 1989;41(6):304–11.

    Article  Google Scholar 

  109. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8.

    Article  CAS  PubMed  Google Scholar 

  110. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85–94.

    Article  CAS  PubMed  Google Scholar 

  111. Barry E, Galvin R, Keogh C, Horgan F, Fahey T. Is the Timed Up and Go test a useful predictor of risk of falls in community dwelling older adults: a systematic review and meta-analysis. BMC Geriatr. 2014;14:14.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Freiberger E, de Vreede P, Schoene D, Rydwik E, Mueller V, Frändin K, et al. Performance-based physical function in older community-dwelling persons: a systematic review of instruments. Age Ageing. 2012;41(6):712–21.

    Article  PubMed  Google Scholar 

  113. Regterschot GR, Zhang W, Baldus H, Stevens M, Zijlstra W. Sensor-based monitoring of sit-to-stand performance is indicative of objective and self-reported aspects of functional status in older adults. Gait Posture. 2015;41(4):935–40.

    Article  PubMed  Google Scholar 

  114. Shany T, Wang K, Liu Y, Lovell NH, Redmond SJ. Review: are we stumbling in our quest to find the best predictor? Over-optimism in sensor-based models for predicting falls in older adults. Healthc Technol Lett. 2015;2(4):79–88.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Iluz T, Weiss A, Gazit E, Tankus A, Brozgol M, Dorfman M, et al. Can a body-fixed sensor reduce heisenberg’s uncertainty when it comes to the evaluation of mobility? Effects of aging and fall risk on transitions in daily living. J Gerontol A Biol Sci Med Sci. 2016;71(11):1459–65.

    Google Scholar 

  116. Lord SR, Menz HB, Tiedemann A. A physiological profile approach to falls risk assessment and prevention. Phys Ther. 2003;83(3):237–52.

    PubMed  Google Scholar 

  117. Horak FB, Wrisley DM, Frank J. The Balance Evaluation Systems Test (BESTest) to differentiate balance deficits. Phys Ther. 2009;89(5):484–98.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Yingyongyudha A, Saengsirisuwan V, Panichaporn W, Boonsinsukh R. The Mini-Balance Evaluation Systems Test (Mini-BESTest) demonstrates higher accuracy in identifying older adult participants with history of falls than do the BESTest, berg balance scale, or timed up and go test. J Geriatr Phys Ther. 2016;39:64–70.

    Article  PubMed  Google Scholar 

  119. Peterka RJ. Sensorimotor integration in human postural control. J Neurophysiol. 2002;88(3):1097–118.

    CAS  PubMed  Google Scholar 

  120. Pasma JH, Engelhart D, Maier AB, Schouten AC, van der Kooij H, Meskers CG. Changes in sensory reweighting of proprioceptive information during standing balance with age and disease. J Neurophysiol. 2015;114(6):3220–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chien JH, Eikema DJ, Mukherjee M, Stergiou N. Locomotor sensory organization test: a novel paradigm for the assessment of sensory contributions in gait. Ann Biomed Eng. 2014;42(12):2512–23.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Geerse DJ, Coolen BH, Roerdink M. Kinematic validation of a multi-kinect v2 instrumented 10-meter walkway for quantitative gait assessments. PLoS One. 2015;10(10):e0139913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Kingma H, Gauchard GC, de Waele C, van Nechel C, Bisdorff A, Yelnik A, et al. Stocktaking on the development of posturography for clinical use. J Vestib Res. 2011;21(3):117–25.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaap H. van Dieën .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

van Dieën, J.H., Pijnappels, M. (2017). Balance Control in Older Adults. In: Barbieri, F., Vitório, R. (eds) Locomotion and Posture in Older Adults. Springer, Cham. https://doi.org/10.1007/978-3-319-48980-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48980-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48979-7

  • Online ISBN: 978-3-319-48980-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics