Skip to main content

Physical Features of Meromictic Lakes: Stratification and Circulation

  • Chapter
  • First Online:
Ecology of Meromictic Lakes

Part of the book series: Ecological Studies ((ECOLSTUD,volume 228))

Abstract

Lakes turn meromictic, when mixing and deep recirculation are insufficient to homogenize the water body and remove chemical gradients. A deepwater layer “the monimolimnion ” is excluded from the deep recirculation and hence develops a pronounced different chemical milieu. It persists through all seasons due to its high density. A limited number of processes are known to accomplish such a density increase of the deep water to create meromixis , such as salty inflows and partial deepwater renewal . However, also geochemical processes, such as decomposition of organic material, iron oxidation, and redissolution and calcite precipitation, can be responsible for meromixis. Other than the overlying water layer “the mixolimnion, ” the monimolimnion does not get into direct contact with the atmosphere and hence is not directly supplied with oxygen. Other substances can be enriched by precipitation and flocculation from the mixolimnion until the solubility product is reached or gas pressure grows beyond absolute pressure. As a consequence, the composition of solutes deviates clearly from usual water composition, and quantitative approaches for density must implement appropriate numerical approaches. The permanent density stratification limits the vertical transport of water and solutes. In several lakes, double-diffusive convection has been reported to significantly enhance the vertical solute transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeschbach-Hertig W, Hofer M, Kipfer R, Imboden DM, Wieler R (1999) Accumulation of mantle gases in a permanently stratified volcanic lake (Lac Pavin, France). Geochim Cosmochim Acta 63:3357–3372

    Article  CAS  Google Scholar 

  • Boehrer B (2012) Double-diffusive convection in lakes. In: Bentsson L, Herschy RW, Fairbridge RW (eds) Encyclopedia of lakes and reservoirs. Springer, Dordrecht, pp 223–224

    Google Scholar 

  • Boehrer B (2013) Physical properties of acidic pit lakes. In: Geller W, Schultze M, Kleinmann R, Wolkersdorfer C (eds) Acidic pit lakes. Springer, Heidelberg, pp 23–42

    Google Scholar 

  • Boehrer B, Schultze M (2008) Stratification of lakes. Rev Geophys 46:RG2005. doi:10.1029/2006RG000210

    Article  Google Scholar 

  • Boehrer B, Matzinger A, Schimmele M (2000) Similarities and differences in the annual temperature cycles of East German mining lakes. Limnologica 30:271–279

    Article  Google Scholar 

  • Boehrer B, Fukuyama R, Chikita K (2008) Stratification of very deep, thermally stratified lakes. Geophys Res Lett 35:L16405. doi:10.1029/2008GL034519

    Article  Google Scholar 

  • Boehrer B, Dietz S, von Rohden C, Kiwel U, Jöhnk KD, Naujoks S, Ilmberger J, Lessmann D (2009) Double-diffusive deep water circulation in an iron-meromictic lake. Geochem Geophys Geosyst 10:Q06006. doi:10.1029/2009GC002389

    Article  Google Scholar 

  • Boehrer B, Herzsprung P, Schultze M, Millero FJ (2010) Calculating density of water in geochemical lake stratification models. Limnol Oceanogr Methods 8:567–574. doi:10.4319/lom.2010.8.567

    Article  CAS  Google Scholar 

  • Boehrer B, Kiwel U, Rahn K, Schultze M (2014) Chemocline erosion and its conservation by freshwater introduction to meromictic salt lakes. Limnologica 44:81–89

    Article  CAS  Google Scholar 

  • Boehrer B, Yusta I, Magin K, Sanchez-España J (2016) Quantifying, assessing and removing the extreme gas load from meromictic Guadiana pit lake, Southwest Spain. Sci Total Environ 563–564:468–477

    Article  PubMed  Google Scholar 

  • Böhrer B, Heidenreich H, Schimmele M, Schultze M (1998) Numerical prognosis for salinity profiles of future lakes in the open cast mine Merseburg-Ost. Int J Salt Lake Res 7:235–260

    Google Scholar 

  • Bøyum A (1973) Salsvatn, a lake with old sea water. Schweiz Zeitschr Hydrol 35:262–277

    Google Scholar 

  • Bøyum A, Kjensmo J (1970) Kongressvatn. A crenogenic meromictic lake at Western Spitsbergen. Arch Hydrobiol 67:542–552

    Google Scholar 

  • Bozkurt I, Mantar S, Karakilcik M (2015) A new performance model to determine energy storage efficiencies of a solar pond. Heat Mass Transf 51:39–48

    Article  Google Scholar 

  • Brandt A, Fernando HJS (eds) (1996) Double diffusive convection. Geophys Monogr Ser, vol 94. AGU, Washington, DC, p 334

    Google Scholar 

  • Campbell P, Torgersen T (1980) Maintenance of iron meromixis by iron redeposition in a rapidly flushed monimolimnion. Can J Fish Aquat Sci 37:1303–1313

    Article  CAS  Google Scholar 

  • Carmack EC, Weiss RF (1991) Convection in Lake Baikal: an example of thermobaric instability. In: Chu PC, Gascard, JC (eds) Deep convection and deep water formation in the Oceans. Elsevier, Amsterdam, pp 215–228,

    Google Scholar 

  • Casamitjana X, Roget E (1993) Resuspension of sediment by focused groundwater in Lake Banyoles. Limnol Oceanogr 38:643–656

    Article  Google Scholar 

  • Chen C-TA, Millero FJ (1986) Precise thermodynamic properties for natural waters covering only the limnological range. Limnol Oceanogr 31:657–662

    Article  CAS  Google Scholar 

  • Crawford GB, Collier RW (2007) Longterm observations of hypolimnetic mixing in Crater Lake, Oregon. Hydrobiologia 574:47–68

    Article  CAS  Google Scholar 

  • Dietz S, Lessmann D, Boehrer B (2012) Contribution of solutes to density stratification in a meromictic lake (Waldsee/Germany). Mine Water Environ 31:129–137

    Article  CAS  Google Scholar 

  • Eloranta P (1999) Light penetration and thermal stratification in lakes. In: Keskitalo J, Eloranta P (eds) Limnology of humic waters. Backhuys Publishers, Leiden, pp 72–74

    Google Scholar 

  • Findenegg I (1933) Alpenseen ohne Vollzirkulation. Int Rev Gesamten Hydrobiol Hydrogr 28:295–311

    Article  Google Scholar 

  • Findenegg I (1935) Limnologische Untersuchungen im Kärntener Seengebiete. Ein Beitrag zu Kenntnis des Stoffhaushaltes in Alpenseen. Int Rev Gesamten Hydrobiol Hydrogr 32:369–423

    Google Scholar 

  • Findenegg I (1937) Holomiktische und meromiktische Seen. Int Rev Gesamten Hydrobiol Hydrogr 35:586–610

    Article  Google Scholar 

  • Fisher TSR (2002) Limnology of the meromictic Island Copper Mine pit lake. Dissertation, University of British Columbia

    Google Scholar 

  • Fisher TSR, Lawrence GA (2006) Treatment of acid rock drainage in a meromictic pit lake. J Environ Eng 132:515–526

    Article  CAS  Google Scholar 

  • Fofonoff NP, Millard RC Jr (1983) Algorithms for commutation of fundamental properties of seawater. UNESCO Tech Pap Mar Sci 44

    Google Scholar 

  • Frey DG (1955) Längsee: a history of meromixis. Mem Ist Ital Idrobiol Suppl 8:141–164

    Google Scholar 

  • Gibson JAE (1999) The meromictic lakes and stratified marine basins of the Vestfold Hills, East Antarctica. Antarct Sci 11:175–192

    Google Scholar 

  • Goudsmit G-H, Peeters F, Gloor M, Wüest A (1997) Boundary versus internal diapycnal mixing in stratified natural waters. J Geophys Res 102(C13):27903–27914

    Article  Google Scholar 

  • Gräfe H, Boehrer B, Hoppe N, Müller SC, Hauptmann P (2002) Ultrasonic in situ measurements of density, adiabatic compressibility, and stability frequency. Limnol Oceanogr 47:1255–1260

    Article  Google Scholar 

  • Halbwachs M, Sabroux J-C, Grangeon J, Kayser G, Tochon-Danguy J-C, Felix A, Beard J-C, Villevielle A, Voter G, Richon P, Wuest A, Hell J (2004) Degassing the “Killer Lakes” Nyos and Monoun, Cameroon. Eos Trans AGU 85:281–285

    Article  Google Scholar 

  • Hammer UT (1986) Saline lake ecosystems of the world. Dr W Junk Publishers, Dordrecht

    Google Scholar 

  • Hammer UT (1994) Life and times of five Saskatchewan saline meromictic lakes. Int Rev Gesamten Hydrobiol 79:235–248

    Article  Google Scholar 

  • Hammer UT, Haynes RC (1978) The saline lakes of Saskatche-wan. II. Locale, hydrography and other physical aspects. Int Rev Gesamten Hydrobiol 63:179–203

    Article  Google Scholar 

  • Heidenreich H, Boehrer B, Kater R, Hennig G (1999) Gekoppelte Modellierung geohydraulischer und limnophysikalischer Vorgänge in Tagebaurestseen und ihrer Umgebung. Grundwasser 4:49–54

    Article  CAS  Google Scholar 

  • Hongve D (1997) Cycling of iron, manganese, and phosphate in a meromictic lake. Limnol Oceanogr 42:635–647

    Article  CAS  Google Scholar 

  • Hongve D (2002) Seasonal mixing and genesis of endogenic meromixis in small lakes in Southeast Norway. Nord Hydrol 33:189–206

    Google Scholar 

  • Hutchinson GE (1937) A contribution to the limnology of arid regions: primarily founded on observations made in the Lahontan basin. Trans Connecticut Acad Arts Sci 33:47–132

    Google Scholar 

  • Hutchinson GE (1957) A treatise on limnology, Geography, physics and chemistry, vol 1. Wiley, New York

    Google Scholar 

  • Imboden DM, Wüest A (1995) Mixing mechanisms in lakes. In: Lerman A, Imboden DM, Gat JR (eds) Physics and chemistry of lakes. Springer, Berlin, pp 83–138

    Google Scholar 

  • International Organization for Standardization (ISO) (1985) Water quality: determination of electrical conductivity, Standard 7888. ISO, Geneva

    Google Scholar 

  • Jellison R, Melack JM (1993) Meromixis in hypersaline Mono Lake, California. 1. Vertical mixing and density stratification during the onset, persistence, and breakdown of meromixis. Limnol Oceanogr 38:1008–1019

    Article  CAS  Google Scholar 

  • Jellison R, Romero J, Melack JM (1998) The onset of meromixis during restoration of Mono Lake, California: unintended consequences of reducing water diversions. Limnol Oceanogr 43:706–711

    Article  Google Scholar 

  • Jellison R, MacIntyre S, Millero FJ (1999) Density and conductivity properties of NA-CO3-Cl-SO4 brine from Mono Lake, California, USA. Int J Salt Lake Res 8:41–53

    Article  Google Scholar 

  • Kaden H, Peeters F, Lorke A, Kipfer R, Tomonaga Y, Karabiyikoglu M (2010) Impact of lake level change on deep-water renewal and oxic conditions in deep saline Lake Van, Turkey. Water Resour Res 46:W11508. doi:10.1029/2009WR008555

    Article  Google Scholar 

  • Kalff J (2002) Limnology, 2nd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Karakas G, Brookland I, Boehrer B (2003) Physical characteristics of acidic Mining Lake 111. Aquat Sci 65:297–307

    Article  Google Scholar 

  • Kerry KR, Grace DR, Williams R, Burton HR (1977) Studies on some saline lakes of the Vestfold Hills, Antarctica. In: Llano GAS (ed) Adaptations within antarctic ecosystems. Gulf, Houston, Texas, pp 839–858

    Google Scholar 

  • Kirkland DW, Platt Bradbury J, Dean WE (1983) The heliothermic lake—a direct method of collecting and storing solar energy. Arch Hydrobiol Suppl 65:1–60

    Google Scholar 

  • Kjensmo J (1967) The development and some main features of “ironmeromictic” soft water lakes. Arch Hydrobiol 32:137–312

    Google Scholar 

  • Kjensmo J (1988) Post-glacial sediments and the stagnation history of the iron-meromictic Lake Skjennungen, Eastern Norway. Arch Hydrobiol 113:481–499

    CAS  Google Scholar 

  • Kling GW (1988) Comparative transparency, depth of mixing and stability of stratification in lakes of Cameroon, West Africa. Limnol Oceanogr 33:27–40

    Article  CAS  Google Scholar 

  • Kling GW, Clark MA, Compton HR, Devine JD, Evans WC, Humphrey AM, Koenigsberg EJ, Lockwood JP, Tuttle ML, Wagner GN (1987) The 1986 Lake Nyos gas disaster in Cameroon, West Africa. Science 236:169–175

    Article  CAS  PubMed  Google Scholar 

  • Kodenev GG (2001) Deep-water renewal in Lake Baikal. Geol Geofiz 42:1127–1136

    CAS  Google Scholar 

  • Lerman A, Imboden DM, Gat JR (eds) (1995) Physics and chemistry of lakes. 2nd edn, Springer, Berlin

    Google Scholar 

  • Lindholm T (1996) Periodic anoxia in an emerging coastal lake basin in SW Finland. Hydrobiologia 325:223–230

    Article  CAS  Google Scholar 

  • Ludlam SD, Duval B (2001) Natural and management induced reduction in monimolimnetic volume and stability in a coastal, meromictic lake. Lake Reserv Manag 17:71–81

    Article  Google Scholar 

  • Marion GM, Farren RE (1999) Mineral solubilities in the Na-K-Mg-Ca-Cl-SO4-H2O system: a re-evaluation of the sulfate chemistry in the Spencer-Møller-Weare model. Geochim Cosmochim Acta 63:1305–1318

    Article  CAS  Google Scholar 

  • McGinnis DF, Greinert J, Artemov Y, Beaubien SE, Wüest A (2006) Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere? J Geophys Res 111:C09007. doi:10.1029/2005JC003183

    Article  Google Scholar 

  • Merilainen J (1970) On the limnology of the meromictic Lake Valkiajarvi, in the Finnish lake district. Ann Bot Fenn 7:29–51

    CAS  Google Scholar 

  • Moreira S, Schultze M, Rahn K, Boehrer B (2016) A practical approach to lake water density from electrical conductivity and temperature. Hydrol Earth Syst Sci Discuss 20:2975–2986. doi:10.5194/hess-2016-36

    Article  Google Scholar 

  • Newman FC (1976) Temperature steps in Lake Kivu: a bottom heated saline lake. J Phys Oceanogr 6:157–163

    Article  Google Scholar 

  • Nissenbaum A (1969) Studies in the geochemistry of the Jordan River-Dead Sea system. Dissertation, University of California

    Google Scholar 

  • Nixdorf E, Boehrer B (2015) Quantitative analysis of biogeochemically controlled density stratification in an iron-meromictic lake. Hydrol Earth Syst Sci 19:4505–4515

    Article  Google Scholar 

  • Ozretich RJ (1975) Mechanisms for deep water renewal in Lake Nitinat, a permanently anoxic fjord. Estuar Coast Mar Sci 3:189–200

    Article  Google Scholar 

  • Peeters F, Kipfer R, Achermann D, Hofer M, Aeschbach-Hertig W, Beyerle U, Imboden DM, Rozanski K, Fröhlich K (2000) Analysis of deep-water exchange in the Caspian Sea based on environmental tracers. Deep-Sea Res I Oceanogr Res Pap 47:621–654

    Article  CAS  Google Scholar 

  • Peeters F, Finger D, Hofer M, Brennwald M, Livingstone DM, Kipfer R (2003) Deep-water renewal in Lake Issyk-Kul driven by differential cooling. Limnol Oceanogr 48:1419–1431

    Article  Google Scholar 

  • Rodrigo MA, Miracle MR, Vicente E (2001) The meromictic Lake La Cruz (Central Spain), patterns of stratification. Aquat Sci 63:406–416

    Article  Google Scholar 

  • Rouwet D, Christenson B, Tassi F, Vandemeulenbrouck J (eds) (2015) Volcanic Lakes. Springer, Heidelberg

    Google Scholar 

  • Salonen K, Arvola L, Rask M (1984) Autumnal and vernal circulation of small forest lakes in Southern Finland. Verh Int Ver Limnol 22:103–107

    Google Scholar 

  • Sánchez-España J, Boehrer B, Yusta I (2014) Extreme carbon dioxide concentrations in acidic pit lakes provoked by water/rock interaction. Environ Sci Technol 48:4273–4281

    Article  PubMed  Google Scholar 

  • Sander R (1999) Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry. http://www.mpch-mainz.mpg.de/~sander/res/henry.html. Accessed 15 Jan 2016

  • Sanderson B, Perry K, Pedersen T (1986) Vertical diffusion in meromictic Powell Lake, British Columbia. J Geophys Res 91(C6):7647–7655

    Article  CAS  Google Scholar 

  • Santofimia E, López-Pamo E, Reyes J (2012) Changes in stratification and iron redox cycle of an acidic pit lake in relation with climatic factors and physical processes. J Geochem Explor 116–117:40–50

    Article  Google Scholar 

  • Scharf BW, Oehms M (1992) Physical and chemical characteristics. Arch Hydrobiol Beih 38:63–83

    CAS  Google Scholar 

  • Schmid M, Lorke A, Dinkel C, Tanyileke G, Wüest A (2004a) Double-diffusive convection in Lake Nyos, Cameroon. Deep-Sea Res I 51:1097–1111

    Article  CAS  Google Scholar 

  • Schmid M, Tietze K, Halbwachs M, Lorke A, McGinnis D, Wüest A (2004b) How hazardous is the gas accumulation in Lake Kivu? arguments for a risk assessment in light of the Nyiragongo Volcano eruption of 2002. Acta Vulcanol 14(15):115–122

    Google Scholar 

  • Sibert RJ, Koretsky CM, Wyman DA (2015) Cultural meromixis: effects of road salt on the chemical stratification of an urban kettle lake. Chem Geol 395:126–137

    Article  CAS  Google Scholar 

  • Stevens CL, Lawrence GA (1997) The effect of subaqueous disposal of tailings in standing waters. J Hydraul Res 35:147–159

    Article  Google Scholar 

  • Stottmeister U, Weißbrodt E, Becker PM, Pörschmann J, Kopinke FD, Martius GM, Wießner A, Kennedy C (1998) Analysis, behaviour and fate of a lignite pyrolysis wastewater deposit. In: Contaminated soil 98. Thomas Telford, London, pp 113–121

    Google Scholar 

  • Strøm KM (1957) A lake with trapped sea-water? Nature 180:982–983

    Article  Google Scholar 

  • Strøm KM (1963) Trapped sea water. New Sci 274:384–386

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  • TEOS-10: IOC, SCOR, and IAPSO (2010) The international thermodynamic equation of seawater–2010: calculation and use of thermodynamic properties. Comm Manuals Guide. http://www.TEOS-10.org. Accessed 15 Jan 2016

  • Tietze K, Geyh M, Müller H, Schröder L (1980) The genesis of methane in Lake Kivu. Geol Rundsch 69:452–472

    Article  CAS  Google Scholar 

  • Vollmer MK, Weiss RF, Bootsma HA (2002a) Ventilation of lake Malawi/Nyasa. In: Odada EO, Olago DO (eds) The East African great lakes: limnology, paleolimnology and biodiversity. Kluwer, Dordrecht, pp 209–233

    Google Scholar 

  • Vollmer MK, Weiss RF, Williams RT, Falkner KK, Qiu X, Ralph EA, Romanovsky VV (2002b) Physical and chemical properties of the waters of saline lakes and their importance for deep-water renewal: lake Issyk-Kul, Kyrgyzstan. Geochim Cosmochim Acta 66:4235–4246

    Article  CAS  Google Scholar 

  • von Rohden C, Ilmberger J (2001) Tracer experiment with sulfurhexafluoride to quantify the vertical transport in a meromictic pit lake. Aquat Sci 63:417–431

    Article  Google Scholar 

  • von Rohden C, Ilmberger J, Boehrer B (2009) Assessing groundwater coupling and vertical exchange in a meromictic mining lake with an SF6-tracer experiment. J Hydrol 372:102–108

    Article  Google Scholar 

  • von Rohden C, Boehrer B, Ilmberger J (2010) Evidence for double diffusion in temperate meromictic lakes. Hydrol Earth Syst Sci 14:667–674

    Article  Google Scholar 

  • Walker KF, Likens GE (1975) Meromixis and a reconsidered typology of lake circulation patterns. Verh Int Ver Limnol 19:442–458

    Google Scholar 

  • Weinberger H (1964) The physics of the solar pond. Sol Energy 8:45–56

    Article  Google Scholar 

  • Weiss RF, Carmack EC, Koropalov VM (1991) Deepwater renewal and biological production in Lake Baikal. Nature 349:665–669

    Article  CAS  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic, San Diego

    Google Scholar 

  • Williams PM, Mathews WH, Pckard GL (1961) A lake in British Columbia containing old sea water. Nature 191:830–832

    Article  Google Scholar 

  • Wüest A, Jarc L, Bürgmann H, Pasche N, Schmid M (2012) Methane formation and future extraction in Lake Kivu. In: Descy J-P, Darchambeau F, Schmid M (eds) Lake Kivu—limnology and biogeochemistry of a tropical great lake. Springer, Dordrecht, pp 165–180

    Google Scholar 

  • Yoshimura S (1935) A contribution to the knowledge of deep water temperatures of Japanese lakes. Part 1. Summer temperature. Jpn J Astron Geophys 13:61–120

    Google Scholar 

  • Yoshimura S (1936) Deep water temperatures of lakes of Japan in winter. Sea Air 15:195–208

    Google Scholar 

  • Zachara JM, Moran JJ, Resch CT, Lindemann SR, Felmy AR, Bowden ME, Cory AB, Fredrickson JK (2016) Geo- and biogeochemical processes in a heliothermal hypersaline lake. Geochim Cosmochim Acta 181:144–163. doi:10.1016/j.gca.2016.02.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertram Boehrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Boehrer, B., von Rohden, C., Schultze, M. (2017). Physical Features of Meromictic Lakes: Stratification and Circulation. In: Gulati, R., Zadereev, E., Degermendzhi, A. (eds) Ecology of Meromictic Lakes. Ecological Studies, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-319-49143-1_2

Download citation

Publish with us

Policies and ethics