Skip to main content

Lysophosphatidic Acid and Sphingosine-1-Phosphate in Pluripotent Stem Cells

  • Chapter
  • First Online:
Lipidomics of Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 665 Accesses

Abstract

Lipids are the major components of biological membranes, playing a role in cell architecture and integrity but also in signaling. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are signaling lipids known to exert pleiotropic effects in various cell types, including during development and disease. They have also been described as potent mediators of stem cell behavior. In this chapter, we review the current knowledge on these major signaling lipids by focusing on pluripotent stem cells. Their impact on pluripotency will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

ATX:

Autotaxin

ENNP2:

Ectonucleotide pyrophosphatase phosphodiesterase 2

ERK:

Extracellular signal-regulated kinase

HDAC:

Histone deacetylase

hESC:

Human embryonic stem cell

iPSC:

Induced pluripotent stem cell

JNK:

c-jun N-terminal kinase

LPA:

Lysphosphatidic acid

MAP:

Mitogen-activated protein

mESC:

Mouse embryonic stem cell

PDGF:

Platelet-derived growth factor

PI3K:

Phosphoinositide 3-kinase

PPAR:

Peroxisome proliferator-activated receptor

S1P:

Sphingosine-1-phosphate

SPhK:

Sphingosine kinase

TRAF2:

TNF receptor-associated factor 2

VEGF:

Vascular endothelial growth factor

References

  1. van Meer G (2005) Cellular lipidomics. EMBO J 24(18):3159–3165

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yetukuri L, Ekroos K, Vidal-Puig A, Oresic M (2008) Informatics and computational strategies for the study of lipids. Mol Biosyst 4(2):121–127

    Article  CAS  PubMed  Google Scholar 

  3. Fyrst H, Saba JD (2010) An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat Chem Biol 6(7):489–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Piomelli D, Astarita G, Rapaka R (2007) A neuroscientist’s guide to lipidomics. Nat Rev Neurosci 8(10):743–754

    Article  CAS  PubMed  Google Scholar 

  5. Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9(2):162–176

    Article  CAS  PubMed  Google Scholar 

  6. Kraut R (2011) Roles of sphingolipids in Drosophila development and disease. J Neurochem 116(5):764–778

    Article  CAS  PubMed  Google Scholar 

  7. Rotstein NP, Miranda GE, Abrahan CE, German OL (2010) Regulating survival and development in the retina: key roles for simple sphingolipids. J Lipid Res 51(6):1247–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frisca F, Sabbadini RA, Goldshmit Y, Pebay A (2012) Biological effects of lysophosphatidic acid in the nervous system. Int Rev Cell Mol Biol 296:273–322

    Article  CAS  PubMed  Google Scholar 

  9. Martin MC et al (2013) 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography. Nat Methods 10(9):861–864

    Article  CAS  PubMed  Google Scholar 

  10. Park H et al (2010) Transcript profiling and lipidomic analysis of ceramide subspecies in mouse embryonic stem cells and embryoid bodies. J Lipid Res 51(3):480–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang MC, O’Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science 322(5903):957–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li J, Cui Z, Zhao S, Sidman RL (2007) Unique glycerophospholipid signature in retinal stem cells correlates with enzymatic functions of diverse long-chain acyl-CoA synthetases. Stem Cells 25(11):2864–2873

    Article  CAS  PubMed  Google Scholar 

  13. Ito K et al (2012) A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med 18(9):1350–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Panopoulos AD et al (2012) The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res 22(1):168–177

    Article  CAS  PubMed  Google Scholar 

  15. Pebay A, Bonder CS, Pitson SM (2007) Stem cell regulation by lysophospholipids. Prostaglandins Other Lipid Mediat 84(3–4):83–97

    Article  CAS  PubMed  Google Scholar 

  16. Olivera A, Allende ML, Proia RL (2013) Shaping the landscape: metabolic regulation of S1P gradients. Biochim Biophys Acta 1831(1):193–202

    Article  CAS  PubMed  Google Scholar 

  17. Hait NC et al (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325(5945):1254–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Strub GM et al (2011) Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J 25(2):600–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kihara Y, Maceyka M, Spiegel S, Chun J (2014) Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol 171(15):3575–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maceyka M, Harikumar KB, Milstien S, Spiegel S (2012) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22(1):50–60

    Article  CAS  PubMed  Google Scholar 

  21. Bieberich E (2012) It’s a lipid’s world: bioactive lipid metabolism and signaling in neural stem cell differentiation. Neurochem Res 37(6):1208–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ghasemi R, Dargahi L, Ahmadiani A (2016) Integrated sphingosine-1 phosphate signaling in the central nervous system: from physiological equilibrium to pathological damage. Pharmacol Res 104:156–164

    Article  CAS  PubMed  Google Scholar 

  23. Pitson SM, Pebay A (2009) Regulation of stem cell pluripotency and neural differentiation by lysophospholipids. Neurosignals 17(4):242–254

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi NR, Hawes SM, Crook JM, Pebay A (2010) G-protein coupled receptors in stem cell self-renewal and differentiation. Stem Cell Rev 6(3):351–366

    Article  CAS  PubMed  Google Scholar 

  25. Todorova MG, Fuentes E, Soria B, Nadal A, Quesada I (2009) Lysophosphatidic acid induces Ca2+ mobilization and c-Myc expression in mouse embryonic stem cells via the phospholipase C pathway. Cell Signal 21(4):523–528

    Article  CAS  PubMed  Google Scholar 

  26. Kleger A et al (2007) The bioactive lipid sphingosylphosphorylcholine induces differentiation of mouse embryonic stem cells and human promyelocytic leukaemia cells. Cell Signal 19(2):367–377

    Article  CAS  PubMed  Google Scholar 

  27. Lee CW, Rivera R, Gardell S, Dubin AE, Chun J (2006) GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem 281(33):23589–23597

    Article  CAS  PubMed  Google Scholar 

  28. Smith GS, Kumar A, Saba JD (2013) Sphingosine phosphate lyase regulates murine embryonic stem cell proliferation and pluripotency through an S1P(2)/STAT3 signaling pathway. Biomolecules 3(3):351–368

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ryu JM et al (2014) Sphingosine-1-phosphate-induced Flk-1 transactivation stimulates mouse embryonic stem cell proliferation through S1P1/S1P3-dependent β-arrestin/c-Src pathways. Stem Cell Res 12(1):69–85

    Article  CAS  PubMed  Google Scholar 

  30. Rodgers A et al (2009) Sphingosine 1-phosphate regulation of extracellular signal-regulated kinase-1/2 in embryonic stem cells. Stem Cells Dev 18(9):1319–1330

    Article  CAS  PubMed  Google Scholar 

  31. Pebay A et al (2005) Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells 23(10):1541–1548

    Article  CAS  PubMed  Google Scholar 

  32. Ermakov A et al (2012) A role for intracellular calcium downstream of G-protein signaling in undifferentiated human embryonic stem cell culture. Stem Cell Res 9(3):171–184

    Article  CAS  PubMed  Google Scholar 

  33. Kleger A, Liebau S, Lin Q, von Wichert G, Seufferlein T (2011) The impact of bioactive lipids on cardiovascular development. Stem Cells Int 2011:916180

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schuck S, Soloaga A, Schratt G, Arthur JS, Nordheim A (2003) The kinase MSK1 is required for induction of c-fos by lysophosphatidic acid in mouse embryonic stem cells. BMC Mol Biol 4:6

    Article  PubMed  PubMed Central  Google Scholar 

  35. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  36. Blauwkamp TA, Nigam S, Ardehali R, Weissman IL, Nusse R (2012) Endogenous Wnt signalling in human embryonic stem cells generates an equilibrium of distinct lineage-specified progenitors. Nat Commun 3:1070

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hsiao C et al (2016) Human pluripotent stem cell culture density modulates YAP signaling. Biotechnol J 11((5)):662–675

    Article  CAS  PubMed  Google Scholar 

  38. Qin H et al (2016) YAP induces human naive pluripotency. Cell Rep 14(10):2301–2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu F-X, Guan K-L (2013) The Hippo pathway: regulators and regulations. Genes Dev 27(4):355–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wong RC, Tellis I, Jamshidi P, Pera M, Pebay A (2007) Anti-apoptotic effect of sphingosine-1-phosphate and platelet-derived growth factor in human embryonic stem cells. Stem Cells Dev 16(6):989–1001

    Article  CAS  PubMed  Google Scholar 

  41. Avery K, Avery S, Shepherd J, Heath PR, Moore H (2008) Sphingosine-1-phosphate mediates transcriptional regulation of key targets associated with survival, proliferation, and pluripotency in human embryonic stem cells. Stem Cells Dev 17(6):1195–1205

    Article  CAS  PubMed  Google Scholar 

  42. Brimble SN et al (2007) The cell surface glycosphingolipids SSEA-3 and SSEA-4 are not essential for human ESC pluripotency. Stem Cells 25(1):54–62

    Article  CAS  PubMed  Google Scholar 

  43. He Q et al (2014) Primary cilia in stem cells and neural progenitors are regulated by neutral sphingomyelinase 2 and ceramide. Mol Biol Cell 25(11):1715–1729

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wenk MR (2010) Lipidomics: new tools and applications. Cell 143(6):888–895

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by an Australian Postgraduate Award Scholarship (GL), an Australian Research Council (ARC) Future Fellowship (AP, FT140100047), the University of Melbourne and Operational Infrastructure Support from the Victorian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Pébay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lidgerwood, G.E., Pébay, A. (2017). Lysophosphatidic Acid and Sphingosine-1-Phosphate in Pluripotent Stem Cells. In: Pébay, A., Wong, R. (eds) Lipidomics of Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-49343-5_1

Download citation

Publish with us

Policies and ethics