Skip to main content

The Role of Laser-Induced Thermal Therapy in the Management of Malignant Gliomas

  • Chapter
  • First Online:
Malignant Brain Tumors

Abstract

Gliomas are the most common primary CNS malignancies, the vast majority of which are resistant high-grade malignant entities that require aggressive treatment with the combination of surgical resection, radiation, and chemotherapy (Neuro-Oncology. 2014;16:iv1–63). Prognoses for patients with unresectable newly diagnosed and recurrent high-grade gliomas remain dismal, and new approaches are required. Laser interstitial thermal therapy (LITT) is a rapidly developing minimally invasive technique that delivers thermal therapy into the tumor cavity under MRI guidance causing tumor ablation by inducing coagulation necrosis. This technique currently seems to be most beneficial in patients who are either poor surgical candidates or whose lesions are difficult to access—such as those located in the corpus callosum, insula, or the deep gray nuclei including the basal ganglia and the thalamus—where standard surgical approaches could result in significant morbidity. Currently, the literature suggests that survival following ablation with LITT can be equivalent to surgical resection both at initial diagnosis and recurrence. Further, several smaller studies now suggest that laser thermal ablation may result in improved survival in those who otherwise would be only eligible for biopsy at time of de novo diagnosis. Given that complications following use of LITT can affect as many as one-third of treated patients, larger, multicenter studies are still needed to confirm these findings and to fully identify the role of LITT in the overall treatment algorithm for patients with high-grade gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CBTRUS. Ostrom QT, Gittleman H, et al. CBTRUS statistical report: primary brain and central nervous system tumor diagnosed in the united states in 2007–2011. Neuro-Oncology. 2014;16:iv1–63.

    Google Scholar 

  2. Stupp R, Dietrich PY, Ostermann Kraljevic S, Pica A, Maillard I, Maeder P, Meuli R, Janzer R, Pizzolato G, Miralbell R, Porchet F, Regli L, de Tribolet N, Mirimanoff RO, Leyvraz S. Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol. 2002;20(5):1375–82.

    Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy GROUPS; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Google Scholar 

  4. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J,Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO; European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups; National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival inglioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66. Doi:10.1016/S1470-2045(09)70025-7. Epub 2009 Mar 9.

  5. Hegi ME, Diserens AC, Godard S, Dietrich PY, Regli L, Ostermann S, Otten P, Van Melle G, de Tribolet N, Stupp R. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res. 2004;10(6):1871–4.

    Article  CAS  PubMed  Google Scholar 

  6. Oszvald A, Güresir E, Setzer M, Vatter H, Senft C, Seifert V, Franz K. Glioblastoma therapy in the elderly and the importance of the extent of resection regardless of age. J Neurosurg. 2012;116(2):357–64. Doi:10.3171/2011.8.JNS102114. Epub 2011 Sep 23.

    Article  PubMed  Google Scholar 

  7. McGirt MJ, Mukherjee D, Chaichana KL, Than KD, Weingart JD, Quinones-Hinojosa A. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery. 2009;65(463–470):44.

    Google Scholar 

  8. Stummer W, Reulen HJ, Meinel T, Pichlmeier U, Schumacher W, Tonn JC, Rohde V, Oppel F, Turowski B, Woiciechowsky C, Franz K, Pietsch T; ALA-Glioma Study Group. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery. 2008;62(3):564–76; discussion 564–76. Doi:10.1227/01.neu.0000317304.31579.17.

  9. Nomiya T, Nemoto K, Kumabe T, Takai Y, Yamada S. Prognostic significance of surgery and radiation therapy in cases of anaplastic astrocytoma: retrospective analysis of 170 cases. J Neurosurg. 2007;106(4):575–81.

    Article  PubMed  Google Scholar 

  10. Stark AM, Nabavi A, Mehdorn HM, Blömer U. Glioblastoma multiforme-report of 267 cases treated at a single institution. Surg Neurol. 2005;63(2):162–9; discussion 169.

    Google Scholar 

  11. Ushio Y, Kochi M, Hamada J, Kai Y, Nakamura H. Effect of surgical removal on survival and quality of life in patients with supratentorial glioblastoma. Neurol Med Chir (Tokyo). 2005;45(9):454–60; discussion 460–1.

    Google Scholar 

  12. Brown PD, Maurer MJ, Rummans TA, Pollock BE, Ballman KV, Sloan JA, Boeve BF, Arusell RM, Clark MM, Buckner JC. A prospective study of quality of life in adults with newly diagnosed high-grade gliomas: the impact of the extent of resection on quality of life and survival. Neurosurgery. 2005;57(3):495–504; discussion 495–504.

    Google Scholar 

  13. Lamborn KR, Chang SM, Prados MD. Prognostic factors for survival of patients with glioblastoma: recursive partitioning analysis. Neuro Oncol. 2004;6(3):227–35.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tortosa A, Viñolas N, Villà S, Verger E, Gil JM, Brell M, Caral L, Pujol T, Acebes JJ, Ribalta T, Ferrer I, Graus F. Prognostic implication of clinical, radiologic, and pathologic features in patients with anaplastic gliomas. Cancer. 2003;97(4):1063–71.

    Article  PubMed  Google Scholar 

  15. Puduvalli VK, Hashmi M, McAllister LD, Levin VA, Hess KR, Prados M, Jaeckle KA, Yung WK, Buys SS, Bruner JM, Townsend JJ, Davis R, Sawaya R, Kyritsis AP. Anaplastic oligodendrogliomas: prognostic factors for tumor recurrence and survival. Oncology. 2003;65(3):259–66.

    Article  PubMed  Google Scholar 

  16. Levin VA, Yung WK, Bruner J, Kyritsis A, Leeds N, Gleason MJ, Hess KR, Meyers CA, Ictech SA, Chang E, Maor MH. Phase II study of accelerated fractionation radiation therapy with carboplatin followed by PCV chemotherapy for the treatment of anaplastic gliomas. Int J Radiat Oncol Biol Phys. 2002;53(1):58–66.

    Article  CAS  PubMed  Google Scholar 

  17. Buckner JC, Schomberg PJ, McGinnis WL, Cascino TL, Scheithauer BW, O’Fallon JR, Morton RF, Kuross SA, Mailliard JA, Hatfield AK, Cole JT, Steen PD, Bernath AM. A phase III study of radiation therapy plus carmustine with or without recombinant interferon-alpha in the treatment of patients with newly diagnosed high-grade glioma. Cancer. 2001;92(2):420–33.

    Article  CAS  PubMed  Google Scholar 

  18. Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115(1):3–8. Doi:10.3171/2011.2.JNS10998. Epub 2011 Mar 18.

    Article  PubMed  Google Scholar 

  19. Keles GE, Chang EF, Lamborn KR, Tihan T, Chang CJ, Chang SM, et al. Volumetric extent of resection and residual contrast enhancement on initial surgery as predictors of outcome in adult patients with hemispheric anaplastic astrocytoma. J Neurosurg. 2006;105:34–40. Doi:10.3171/jns.2006.105.1.34.

    Article  PubMed  Google Scholar 

  20. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95(2):190–8.

    Article  CAS  PubMed  Google Scholar 

  21. Pope WB, Sayre J, Perlina A, Villablanca JP, Mischel PS, Cloughesy TF. MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol. 2005;26(10):2466–74.

    Google Scholar 

  22. Keles GE, Anderson B, Berger MS. The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg Neurol. 1999;52(4):371–9.

    Article  CAS  PubMed  Google Scholar 

  23. Fazeny-Dörner B, Wenzel C, Veitl M, Piribauer M, Rössler K, Dieckmann K, et al. Survival and prognostic factors of patients with unresectable glioblastoma multiforme. Anticancer Drugs. 2003;14:305–12.

    Article  PubMed  Google Scholar 

  24. Keles GE, Lamborn KR, Chang SM, Prados MD, Berger MS. Volume of residual disease as a predictor of outcome in adult patients with recurrent supratentorial glioblastomas multiforme who are undergoing chemotherapy. J Neurosurg. 2004;100(1):41–6.

    Article  PubMed  Google Scholar 

  25. Gulati S, Jakola AS, Nerland US, Weber C, Solheim O. The risk of getting worse: surgically acquired deficits, perioperative complications, and functional outcomes after primary resection of glioblastoma. World Neurosurg. 2011;76:572–9.

    Article  PubMed  Google Scholar 

  26. Skinner MG, Iizuka MN, Kolios MC, Sherar MD. A theoretical comparison of energy sources–microwave, ultrasound and laser–for interstitial thermal therapy. Phys Med Biol. 1998;43(12):3535–47.

    Article  CAS  PubMed  Google Scholar 

  27. Seegenschmiedt MH, Sauer R. The current role of interstitial thermo-radiotherapy. Strahlenther Onkol. 1992;168(3):119–40.

    CAS  PubMed  Google Scholar 

  28. Powers SK, Beckman WC Jr, Brown JT, Kolpack LC. Interstitial laser photochemotherapy of rhodamine-123-sensitized rat glioma. J Neurosurg. 1987;67(6):889–94.

    Article  CAS  PubMed  Google Scholar 

  29. Elias Z, Powers SK, Atstupenas E, Brown JT. Hyperthermia from interstitial laser irradiation in normal rat brain. Lasers Surg Med. 1987;7(4):370–5.

    Article  CAS  PubMed  Google Scholar 

  30. Devaux BC, Roux FX. Experimental and clinical standards, and evolution of lasers in neurosurgery. Acta Neurochir (Wien). 1996;138(10):1135–47.

    Article  CAS  Google Scholar 

  31. Jolesz FA. Functional imaging of the brain. 1983;17(1):59–62.

    Google Scholar 

  32. Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10:787–800.

    Article  CAS  PubMed  Google Scholar 

  33. Sapareto SA. Thermal isoeffect dose: addressing the problem of thermotolerance. Int J Hyperthermia. 1987;3:297–305.

    Article  CAS  PubMed  Google Scholar 

  34. Cline HE, Schenck JF, Hynynen K, Watkins RD, Souza SP, Jolesz FA. MR-guided focused ultrasound surgery. J Comput Assist Tomogr. 1992;16:956–65.

    Article  CAS  PubMed  Google Scholar 

  35. Tracz RA, Wyman DR, Little PB, Towner RA, Stewart WA, Schatz SW, Pennock PW, Wilson BC. Magnetic resonance imaging of interstitial laser photocoagulation in brain. Lasers Surg Med. 1992;12(2):165–73.

    Article  CAS  PubMed  Google Scholar 

  36. Tracz RA, Wyman DR, Little PB, Towner RA, Stewart WA, Schatz SW, Wilson BC, Pennock PW, Janzen EG. Comparison of magnetic resonance images and the histopathological findings of lesions induced by interstitial laser photocoagulation in the brain. Lasers Surg Med. 1993;13(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  37. Menovsky T, Beek JF, Phoa SS, Brouwer PA, Klein MG, Verlaan CW, van Acker RE, van Gemert MJ. Ultrasonography in acute interstitial laser irradiation of the pig brain: preliminary results. J Image Guid Surg. 1995;1(4):237–41.

    Article  CAS  PubMed  Google Scholar 

  38. Leonardi MA, Lumenta CB, Gumprecht HK, von Einsiedel GH, Wilhelm T. Stereotactic guided laser-induced interstitial thermotherapy (SLITT) in gliomas with intraoperative morphologic monitoring in an open MR-unit. Minim Invasive Neurosurg. 2001;44(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  39. McNichols RJ, Gowda A, Kangasniemi M, Bankson JA, Price RE, Hazle JD. MR thermometry-based feedback control of laser interstitial thermal therapy at 980 nm. Lasers Surg Med. 2004;34(1):48–55.

    Article  PubMed  Google Scholar 

  40. Hawasli AH, Ray WZ, Murphy RK, Dacey RG Jr, Leuthardt EC. Magnetic resonance imaging-guided focused laser interstitial thermal therapy for subinsular metastatic adenocarcinoma: technical case report. Neurosurgery. 2012;70(2 Suppl. Operative):332–7; discussion 338. Doi:10.1227/NEU.0b013e318232fc90.

  41. Hawasli AH, Bagade S, Shimony JS, Miller-Thomas M, Leuthardt EC. Magnetic resonance imaging-guided focused laser interstitial thermal therapy for intracranial lesions: single-institution series. Neurosurgery. 2013;73(6):1007–17. Doi:10.1227/NEU.0000000000000144.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mohammadi AM, Hawasli AH, Rodriguez A, Schroeder JL, Laxton AW, Elson P, Tatter SB, Barnett GH, Leuthardt EC. The role of laser interstitial thermal therapy in enhancing progression-free survival of difficult-to-access high-grade gliomas: a multicenter study. Cancer Med. 2014;3(4):971–9. Doi:10.1002/cam4.266. Epub 2014 May 9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Torres-Reveron J, Tomasiewicz HC, Shetty A, Amankulor NM, Chiang VL. Stereotactic laser induced thermotherapy (LITT): a novel treatment for brain lesions regrowing after radiosurgery. J Neurooncol. 2013;113(3):495–503. Doi:10.1007/s11060-013-1142-2. Epub 2013 May 16.

    Article  CAS  PubMed  Google Scholar 

  44. Rahmathulla G, Recinos PF, Valerio JE, Chao S, Barnett GH. Laser interstitial thermal therapy for focal cerebral radiation necrosis: a case report and literature review. Stereotact Funct Neurosurg. 2012;90(3):192–200. Doi:10.1159/000338251. Epub 2012 Jun 5.

    Article  PubMed  Google Scholar 

  45. Chao ST, Ahluwalia MS, Barnett GH, Stevens GH, Murphy ES, Stockham AL, Shiue K, Suh JH. Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol Biol Phys. 2013;87(3):449–57. Doi:10.1016/j.ijrobp.2013.05.015. Epub 2013 Jun 19.

    Article  PubMed  Google Scholar 

  46. Kang JY, Wu C, Tracy J, Lorenzo M, Evans J, Nei M, Skidmore C, Mintzer S, Sharan AD, Sperling MR. Laser interstitial thermal therapy for medically intractable mesial temporal lobe epilepsy. Epilepsia. 2016;57(2):325–34. Doi:10.1111/epi.13284. Epub 2015 Dec 24.

    Article  PubMed  Google Scholar 

  47. Tiwari P, Danish S, Madabhushi A. Identifying MRI markers associated with early response following laser ablation for neurological disorders: preliminary findings. PLoS One. 2014;9(12):e114293. Doi:10.1371/journal.pone.0114293. eCollection 2014.

  48. Curry DJ, Gowda A, McNichols RJ, Wilfong AA. MR-guided stereotactic laser ablation of epileptogenic foci in children. Epilepsy Behav. 2012;24(4):408–14. Doi:10.1016/j.yebeh.2012.04.135. Epub 2012 Jun 9.

    Article  PubMed  Google Scholar 

  49. Consiglieri GD, Killory BD, Germain RS, Spetzler RF. Utility of the CO2 laser in the microsurgical resection of cavernous malformations. World Neurosurg. 2013;79(5–6):714–8. Doi:10.1016/j.wneu.2011.12.088. Epub 2011 Dec 28.

  50. Wang NK, Hung KL, Liao HC, Lin YM. A patient with PHACE syndrome with marked ipsilateral cerebral atrophy. Pediatr Neonatol. 2010;51(2):130–4. Doi:10.1016/S1875-9572(10)60023-X.

    Article  PubMed  Google Scholar 

  51. Passacantilli E, Antonelli M, D’Amico A, Delfinis CP, Anichini G, Lenzi J, Santoro A. Neurosurgical applications of the 2-μm thulium laser: histological evaluation of meningiomas in comparison to bipolar forceps and an ultrasonic aspirator. Photomed Laser Surg. 2012;30(5):286–92. Doi:10.1089/pho.2011.3137. Epub 2012 Mar 9.

    Article  PubMed  Google Scholar 

  52. Passacantilli E, Anichini G, Delfinis CP, Lenzi J, Santoro A. Use of 2-μm continuous-wave thulium laser for surgical removal of a tentorial meningioma: case report. Photomed Laser Surg. 2011;29(6):437–40. Doi:10.1089/pho.2010.2809. Epub 2010 Dec 23.

    Article  CAS  PubMed  Google Scholar 

  53. Feyh J, Gutmann R, Leunig A, Jäger L, Reiser M, Saxton RE, Castro DJ, Kastenbauer E. MRI-guided laser interstitial thermal therapy (LITT) of head and neck tumors: progress with a new method. J Clin Laser Med Surg. 1996;14(6):361–6.

    CAS  PubMed  Google Scholar 

  54. Riordan M, Tovar-Spinoza Z. Laser induced thermal therapy (LITT) for pediatric brain tumors: case-based review. Trans Pediatr. 2014;3(3):229–35. Doi:10.3978/j.issn.2224-4336.2014.07.07.

    Google Scholar 

  55. Jethwa PR, Barrese JC, Gowda A, Shetty A, Danish SF. Magnetic resonance thermometry-guided laser-induced thermal therapy for intracranial neoplasms: initial experience. Neurosurgery. 2012;71(1 Suppl. Operative):133–44; 144–5.

    Google Scholar 

  56. Carpentier A, McNichols RJ, Stafford RJ, Itzcovitz J, Guichard JP, Reizine D, Delaloge S, Vicaut E, Payen D, Gowda A, George B. Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery. 2008;63(1 Suppl. 1):ONS21–8; discussion ONS28-9. Doi:10.1227/01.neu.0000335007.07381.df.

  57. Tovar-Spinoza Z, Carter D, Ferrone D, et al. The use of MRI-guided laser-induced thermal ablation for epilepsy. Childs Nerv Syst. 2013;29:2089–94.

    Article  PubMed  Google Scholar 

  58. Welch AJ, Cain CP. Combination sensor for measurement of light and temperature. Lasers Surg Med. 1995;16(4):397–400.

    Article  CAS  PubMed  Google Scholar 

  59. Hawasli AH, Kim AH, Dunn GP, Tran DD, Leuthardt EC. Stereotactic laser ablation of high-grade gliomas. Neurosurg Focus. 2014;37(6):E1. Doi:10.3171/2014.9.FOCUS14471.

    Article  PubMed  Google Scholar 

  60. Sloan AE, Ahluwalia MS, Valerio-Pascua J, Manjila S, Torchia MG, Jones SE, Sunshine JL, Phillips M, Griswold MA, Clampitt M, Brewer C, Jochum J, McGraw MV, Diorio D, Ditz G, Barnett GH. Results of the NeuroBlate System first-in-humans Phase I clinical trial for recurrent glioblastoma: clinical article. J Neurosurg. 2013;118(6):1202–19. Doi:10.3171/2013.1.JNS1291. Epub 2013 Apr 5.

    Article  PubMed  Google Scholar 

  61. Carpentier A, Chauvet D, Reina V, Beccaria K, Leclerq D, McNichols RJ, Gowda A, Cornu P, Delattre JY. MR-guided laser-induced thermal therapy (LITT) for recurrent glioblastomas. Lasers Surg Med. 2012;44(5):361–8. Doi:10.1002/lsm.22025. Epub 2012 Apr 5.

    Article  PubMed  Google Scholar 

  62. Schwarzmaier HJ, Eickmeyer F, von Tempelhoff W, Fiedler VU, Niehoff H, Ulrich SD, Yang Q, Ulrich F. MR-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: preliminary results in 16 patients. Eur J Radiol. 2006;59(2):208–15. Epub 2006 Jul 18.

    Article  PubMed  Google Scholar 

  63. Schwarzmaier HJ, Eickmeyer F, von Tempelhoff W, Fiedler VU, Niehoff H, Ulrich SD, Ulrich F. MR-guided laser irradiation of recurrent glioblastomas. J Magn Reson Imaging. 2005;22(6):799–803.

    Article  PubMed  Google Scholar 

  64. Schulze PC, Vitzthum HE, Goldammer A, Schneider JP, Schober R. Laser-induced thermotherapy of neoplastic lesions in the brain—underlying tissue alterations, MRI-monitoring and clinical applicability. Acta Neurochir (Wien). 2004;146:803–12.

    Article  CAS  Google Scholar 

  65. Leonardi MA, Lumenta CB. Stereotactic guided laser-induced interstitial thermotherapy (SLITT) in gliomas with intraoperative morphologic monitoring in an open MR: clinical expierence. Minim Invasive Neurosurg. 2002;45(4):201–7.

    Article  CAS  PubMed  Google Scholar 

  66. Lumenta CB, Leonardi MA, von Einsiedel H. Stereotactic guided laser-induced interstitial thermotherapy (SLITT) in gliomas with intraoperative morphologic monitoring in open MR. 2001. SPIE (Abstract).

    Google Scholar 

  67. Reimer P, Bremer C, Horch C, Morgenroth C, Allkemper T, Schuierer G. MR-monitored LITT as a palliative concept in patients with high grade gliomas: preliminary clinical experience. J Magn Reson Imaging. 1998;8(1):240–4.

    Google Scholar 

  68. Schwabe B, Kahn T, Harth T, Ulrich F, Schwarzmaier HJ. Laser-induced thermal lesions in the human brain: short- and long-term appearance on MRI. J Comput Assist Tomogr. 1997;21(5):818–25.

    Google Scholar 

  69. Kahn D, Follett KA, Bushnell DL, Nathan MA, Piper JG, Madsen M, Kirchner PT. Diagnosis of recurrent brain tumor: value of 201Tl SPECT vs 18F-fluorodeoxyglucose PET. AJR Am J Roentgenol. 1994;163(6):1459–65.

    Article  CAS  PubMed  Google Scholar 

  70. Bettag M, Ulrich F, Schober R, Hessel S, Sabel M: Experimental and first clinical results of Nd:YAG laser-induced hyperthermia in brain tumours. In: Waidelich W, Waidelich R, Hofstetter A, editors. Laser in medicine. Berlin: Springer-Verlag; 1992. pp. 210–213.

    Google Scholar 

  71. Sakai T, Fujishima I, Sugiyama K, Ryu H, Uemura K. Interstitial laserthermia in neurosurgery. J Clin Laser Med Surg. 1992;10(1):37–40.

    CAS  PubMed  Google Scholar 

  72. Bettag M, Ulrich F, Schober R, Fürst G, Langen KJ, Sabel M, Kiwit JC. Stereotactic laser therapy in cerebral gliomas. Acta Neurochir Suppl (Wien). 1991;52:81–3.

    Article  CAS  Google Scholar 

  73. Sugiyama K, Sakai T, Fujishima I, Ryu H, Uemura K, Yokoyama T. Stereotactic interstitial laser-hyperthermia using Nd-YAG laser. Stereotact Funct Neurosurg. 1990;54–55:501–5.

    Article  PubMed  Google Scholar 

  74. Sabel M, Rommel F, Kondakci M, Gorol M, Willers R, Bilzer T. Locoregional opening of the rodent blood-brain barrier for paclitaxel using Nd:YAG laser-induced thermo therapy: a new concept of adjuvant glioma therapy? Lasers Surg Med. 2003;33:75–80.

    Article  PubMed  Google Scholar 

  75. Nakagawa M, Matsumoto K, Higashi H, Furuta T, Ohmoto T. Acute effects of interstitial hyperthermia on normal monkey brain—magnetic resonance imaging appearance and effects on blood-brain barrier. Neurol Meg Chir (Tokyo). 1994;34:668–75.

    Article  CAS  Google Scholar 

  76. Hwuang E, Danish S, Rusu M, Sparks R, Toth R, Madabhushi A. Anisotropic smoothing regularization (AnSR) in Thirion’s Demons registration evaluates brain MRI tissue changes post-laser ablation. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:4006–9. Doi:10.1109/EMBC.2013.6610423.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Fomchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fomchenko, E., Chiang, V.L.S. (2017). The Role of Laser-Induced Thermal Therapy in the Management of Malignant Gliomas. In: Moliterno Gunel, J., Piepmeier, J., Baehring, J. (eds) Malignant Brain Tumors . Springer, Cham. https://doi.org/10.1007/978-3-319-49864-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49864-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49863-8

  • Online ISBN: 978-3-319-49864-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics