Skip to main content

Interaction Network, State Space, and Control in Social Dynamics

  • Chapter
  • First Online:
Active Particles, Volume 1

Abstract

In the present chapter, we study the emergence of global patterns in large groups in first- and second-order multiagent systems, focusing on two ingredients that influence the dynamics: the interaction network and the state space. The state space determines the types of equilibrium that can be reached by the system. Meanwhile, convergence to specific equilibria depends on the connectivity of the interaction network and on the interaction potential. When the system does not satisfy the necessary conditions for convergence to the desired equilibrium, control can be exerted, both on finite-dimensional systems and on their mean-field limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Albi, M. Bongini, E. Cristiani, and D. Kalise. Invisible control of self-organizing agents leaving unknown environments. SIAM Journal on Applied Mathematics. to appear.

    Google Scholar 

  2. G. Albi, M. Herty, and L. Pareschi. Kinetic description of optimal control problems and applications to opinion consensus. Communications in Mathematical Sciences, 13(6):1407–1429, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Albi and L. Pareschi. Selective model-predictive control for flocking systems. preprint.

    Google Scholar 

  4. G. Albi and L. Pareschi. Modeling of self-organized systems interacting with a few indi- viduals: from microscopic to macroscopic dynamics. Applied Mathematics Letters, 26:397–401, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Albi, L. Pareschi, and M. Zanella. Boltzmann-type control of opinion consensus through leaders. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372(2028), 2014.

    MATH  Google Scholar 

  6. M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences, 105(4):1232–1237, 2008.

    Article  Google Scholar 

  7. M. Bardi and F. S. Priuli. LQG mean-field games with ergodic cost. In 52nd IEEE Conference on Decision and Control, pages 2493–2498, Dec 2013.

    Google Scholar 

  8. M. Bardi and F. S. Priuli. Linear-quadratic \(n\)-person and mean-field games with ergodic cost. SIAM Journal on Control and Optimization, 52(5):3022–3052, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Behera and F. Schweitzer. On spatial consensus formation: Is the Sznajd model different from a voter model? International Journal of Modern Physics C, 14(10):1331–1354, 2003.

    Article  Google Scholar 

  10. V. D. Blondel, J. M. Hendrickx, and J. N. Tsitsiklis. Continuous-time average-preserving opinion dynamics with opinion-dependent communications. SIAM Journal on Control and Optimization, 48(8):5214–5240, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Bullo, J. Cortés, and S. Martínez. Distributed control of robotic networks: a mathematical approach to motion coordination algorithms. Princeton series in applied mathematics. Princeton University Press, Princeton, 2009.

    Book  MATH  Google Scholar 

  12. J. A. Cañizo, J. A. Carillo, and J. Rosado. A well-posedness theory in measures for some kinetic models of collective motion. Mathematical Models and Methods in Applied Sciences, 21(03):515–539, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. E. Caines. Encyclopedia of Systems and Control, chapter Mean Field Games, pages 1–6. Springer London, London, 2013.

    Google Scholar 

  14. M. Caponigro, M. Fornasier, B. Piccoli, and E. Trélat. Sparse stabilization and optimal control of the Cucker–Smale model. Mathematical Control and Related Fields, 3:447–466, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Caponigro, M. Fornasier, B. Piccoli, and E. Trélat. Sparse stabilization and control of alignment models. Mathematical Models and Methods in Applied Sciences, 25(3):521–564, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Caponigro, A. C. Lai, and B. Piccoli. A nonlinear model of opinion formation on the sphere. Discrete and Continuous Dynamical Systems Ser. A, (9):4241–4268, 2015.

    Google Scholar 

  17. J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil. Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, chapter Particle, kinetic, and hydrodynamic models of swarming, pages 297–336. Birkhäuser Boston, Boston, 2010.

    Google Scholar 

  18. F. H. Clarke, Y. S. Ledyaev, E. D. Sontag, and A. I. Subbotin. Asymptotic controllability implies feedback stabilization. Automatic Control, IEEE Transactions on, 42(10):1394–1407, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Colombo and N. Pogodaev. On the control of moving sets: positive and negative confinement results. SIAM J. Control Optim., 51(1):380–401, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  20. I. Couzin, J. Krause, R. James, G. Ruxton, and N. Franks. Collective memory and spatial sorting in animal groups. J Theor Biol, 218(1–11), 2002.

    Google Scholar 

  21. E. Cristiani, P. Frasca, and B. Piccoli. Effects of anisotropic interactions on the structure of animal groups. Journal of mathematical biology, 62(4):569–588, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Cristiani, B. Piccoli, and C. Tosin. Multiscale modeling of granular flows with application to crowd dynamics. SIAM Multiscale Modeling and Simulations, 9:155–182, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Transactions on Automatic Control, 52:852–862, 2007.

    Article  MathSciNet  Google Scholar 

  24. M. H. De Groot. Reaching a consensus. Journal of American Statistical Association, 69:118 – 121, 1974.

    Article  MATH  Google Scholar 

  25. G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch. Mixing beliefs among interacting agents. Advances in Complex Systems, 3(01n04):87–98, 2000.

    Google Scholar 

  26. P. Degond, M. Herty, and J.-G. Liu. Mean-field games and model predictive control. preprint.

    Google Scholar 

  27. P. Degond, J.-G. Liu, and C. Ringhofer. Large-scale dynamics of mean-field games driven by local Nash equilibria. Journal of Nonlinear Science, 24(1):93–115, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Degond and S. Motsch. Continuum limit of self-driven particles with orientation interaction. Mathematical Models and Methods in Applied Sciences, 18(supp01):1193–1215, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Degond and S. Motsch. Large scale dynamics of the persistent turning walker model of fish behavior. Journal of Statistical Physics, 131(6):989–1021, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. C. Dittmer. Diskrete nichtlineare modelle der konsensbildung. Diploma thesis Universität Bremen, 2000.

    Google Scholar 

  31. F. Dörfler, M. Chertkov, and F. Bullo. Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences, 110(6):2005–2010, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, and L. S. Chayes. Self-propelled particles with soft-core interactions: Patterns, stability, and collapse. Phys. Rev. Lett., 96:104302, Mar 2006.

    Google Scholar 

  33. M. Fornasier, B. Piccoli, N. Pouradier Duteil, and F. Rossi. Mean-field optimal control by leaders. In 53rd IEEE Conference on Decision and Control, pages 6957–6962, Dec 2014.

    Google Scholar 

  34. M. Fornasier, B. Piccoli, and F. Rossi. Mean-field sparse optimal control. Philosophilcal Transaction of the Royal Society A, 372, 2014.

    Google Scholar 

  35. M. Fornasier and F. Solombrino. Mean-field optimal control. ESAIM: Control, Optimisation and Calculus of Variations, 20(4):1123–1152, 2014.

    Google Scholar 

  36. J. R. P. French. A formal theory of social power. Psychological Review, 63:181–194, 1956.

    Google Scholar 

  37. I. Giardina. Collective behavior in animal groups: theoretical models and empirical studies. Human Frontier Science Program Journal, (205–219), 2008.

    Google Scholar 

  38. O. Guéant, J.-M. Lasry, and P.-L. Lions. Paris-Princeton Lectures on Mathematical Finance 2010, chapter Mean Field Games and Applications, pages 205–266. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

    Google Scholar 

  39. S. Y. Ha, T. Ha, and J. H. Kim. Emergent behavior of a Cucker–Smale type particle model with nonlinear velocity couplings. IEEE Transactions on Automatic Control, 55(7):1679–1683, July 2010.

    Google Scholar 

  40. S.-Y. Ha, K. Lee, and D. Levy. Emergence of time-asymptotic flocking in a stochastic Cucker–Smale system. Commun. Math. Sci., 7(2):453–469, 06 2009.

    Google Scholar 

  41. S.-Y. Ha and E. Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. arXiv preprint arXiv:0806.2182, 2008.

  42. F. Harary. A criterion for unanimity in french’s theory of social power. Cartwright D (Ed.), Studies in Social Power, 1959.

    Google Scholar 

  43. J. Haskovec. Flocking dynamics and mean-field limit in the Cucker–Smale-type model with topological interactions. Physica D: Nonlinear Phenomena, 261:42 – 51, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  44. R. Hegselmann and A. Flache. Understanding complex social dynamics – a plea for cellular automata based modelling. Journal of Artificial Societies and Social Simulation, 1(3), 1998.

    Google Scholar 

  45. R. Hegselmann and U. Krause. Opinion dynamics and bounded confidence models, analysis, and simulation. Journal of Artificial Societies and Social Simulation, 5(3), 2002.

    Google Scholar 

  46. M. Herty, L. Pareschi, and S. Steffensen. Mean–field control and Riccati equations. Networks and Heterogeneous Media, 10(3):699–715, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  47. J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

    Article  MathSciNet  Google Scholar 

  48. M. Huang, R. P. Malham, and P. E. Caines. Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst., 6(3):221–252, 2006.

    MathSciNet  MATH  Google Scholar 

  49. A. Huth and C. Wissel. The simulation of the movement of fish schools. Journal of Theoretical Biology, 156:365–385, 1992.

    Article  Google Scholar 

  50. A. Isidori. Nonlinear control systems. Springer Science & Business Media, 2013.

    Google Scholar 

  51. P. Jabin and S. Motsch. Clustering and asymptotic behavior in opinion formation. Journal of Differential Equations, 257(11):4165–4187, 12 2014.

    Google Scholar 

  52. A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile autonomous agents using nearest neighbor rules. Automatic Control, IEEE Transactions on, 48(6):988–1001, 2003.

    Article  MathSciNet  Google Scholar 

  53. J. M. Kleinberg. Navigation in a small world. Nature, 406(6798):845–845, 08 2000.

    Google Scholar 

  54. J. Krause and G. Ruxton. Living in groups. Oxford series in ecology and evolution. Oxford University Press, New York, 2002.

    Google Scholar 

  55. U. Krause. Soziale dynamiken mit vielen interakteuren, eine problemskizze. Krause U and Stöckler M (Eds.) Modellierung und Simulation von Dynamiken mit vielen interagierenden Akteuren, Universität Bremen, pages 37 – 51, 1997.

    Google Scholar 

  56. U. Krause. A discrete nonlinear and non—autonomous model of consensus formation. Elaydi S, Ladas G, Popenda J and Rakowski J (Eds.), Communications in Difference Equations, Amsterdam: Gordon and Breach Publ., pages 227 – 236, 2000.

    Google Scholar 

  57. Y. Kuramoto. Cooperative dynamics of oscillator community a study based on lattice of rings. Progress of Theoretical Physics Supplement, 79:223–240, 1984.

    Article  Google Scholar 

  58. A. Lachapelle and M.-T. Wolfram. On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transportation Research Part B: Methodological, 45(10):1572–1589, 2011.

    Article  Google Scholar 

  59. J.-M. Lasry and P.-L. Lions. Mean field games. Japanese Journal of Mathematics, 2(1):229–260, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  60. K. Lehrer. Social consensus and rational agnoiology. Synthese, 31:141 – 160, 1975.

    Article  Google Scholar 

  61. N. Leonard. Multi-agent system dynamics: Bifurcation and behavior of animal groups. Plenary paper IFAC Symposium on Nonlinear Control Systems, Toulouse, France., 2013.

    Google Scholar 

  62. J. Maciejowski, P. Goulart, and E. Kerrigan. Constrained Control Using Model Predictive Control, pages 273–291. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

    Google Scholar 

  63. L. Moreau. Stability of continuous-time distributed consensus algorithms. In Decision and Control, 2004. CDC. 43rd IEEE Conference on, volume 4, pages 3998–4003. IEEE, 2004.

    Google Scholar 

  64. L. Moreau. Stability of multiagent systems with time-dependent communication links. Automatic Control, IEEE Transactions on, 50(2):169–182, 2005.

    Article  MathSciNet  Google Scholar 

  65. S. Motsch and E. Tadmor. Heterophilious dynamics enhances consensus. SIAM Review, 56(4):577–621, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  66. R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

    Article  Google Scholar 

  67. L. Pareschi and G. Toscani. Interacting multiagent systems: kinetic equations and Monte Carlo methods. OUP Oxford, 2013.

    Google Scholar 

  68. J. Parrish, S. Viscido, and D. Grunbaum. Self-organized fish schools: an examination of emergent properties. The Biological Bulletin, 202:296–305, 2002.

    Article  Google Scholar 

  69. L. Perea, P. Elosegui, and G. Gómez. Extension of the Cucker–Smale control law to space flight formations. Journal of Guidance, Control, and Dynamics, 32:527–537, 2009.

    Article  Google Scholar 

  70. B. Piccoli, N. Pouradier Duteil, and B. Scharf. Optimal control of a collective migration model. Mathematical Models and Methods in Applied Sciences (to appear), 2015.

    Google Scholar 

  71. B. Piccoli, F. Rossi, and E. Trélat. Control to flocking of the kinetic Cucker–Smale model. SIAM Journal on Mathematical Analysis, 47(6):4685–4719, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  72. A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt. Controllability of multi-agent systems from a graph-theoretic perpective. SIAM Journal on Control and Optimization, 48(1):162–186, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  73. A. Sarlette. Geometry and symmetries in coordination control. PhD thesis, Université de Liège, 2009.

    Google Scholar 

  74. A. Sarlette and R. Sepulchre. Consensus optimization on manifolds. SIAM Journal on Control and Optimization, 48(1):56–76, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  75. L. Scardovi, A. Sarlette, and R. Sepulchre. Synchronization and balancing on the N-torus. Systems & Control Letters, 56(5):335 – 341, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  76. R. Sepulchre. Consensus on nonlinear spaces. Annual reviews in control, 35(1):56–64, 2011.

    Article  MATH  Google Scholar 

  77. R. Sepulchre, D. Paley, N. E. Leonard, et al. Stabilization of planar collective motion: All-to-all communication. Automatic Control, IEEE Transactions on, 52(5):811–824, 2007.

    Article  MathSciNet  Google Scholar 

  78. R. Sepulchre, D. Paley, N. E. Leonard, et al. Stabilization of planar collective motion with limited communication. Automatic Control, IEEE Transactions on, 53(3):706–719, 2008.

    Article  MathSciNet  Google Scholar 

  79. P. Sobkowicz. Modelling opinion formation with physics tools: Call for closer link with reality. Journal of Artificial Societies and Social Simulation, 12(1):11, 2009.

    Google Scholar 

  80. E. D. Sontag. Mathematical control theory: deterministic finite dimensional systems, volume 6. Springer Science & Business Media, 2013.

    Google Scholar 

  81. S. H. Strogatz. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D: Nonlinear Phenomena, 143(1–4):1 – 20, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  82. D. Sumpter. The principles of collective animal behaviour. Philosophilcal Transaction of the Royal Society B, 361:5–22, 2006.

    Article  Google Scholar 

  83. K. Sznajd-Weron and J. Sznajd. Opinion evolution in closed community. International Journal of Modern Physics C, 11(06):1157–1165, 2000.

    Article  MATH  Google Scholar 

  84. G. Toscani. Kinetic models of opinion formation. Commun. Math. Sci., 4(3):481–496, 09 2006.

    Google Scholar 

  85. J. N. Tsitsiklis. Problems in Decentralized Decision making and Computation. PhD thesis, MIT, 1984.

    Google Scholar 

  86. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett., 75:1226–1229, Aug 1995.

    Article  MathSciNet  Google Scholar 

  87. C. Villani. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Archive for Rational Mechanics and Analysis, 143(3):273–307, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  88. D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393(6684):440–442, 06 1998.

    Google Scholar 

  89. H. Whitney. On singularities of mappings of Euclidean spaces. I. mappings of the plane into the plane. Annals of Mathematics, 62(3):374–410, 1955.

    Article  MathSciNet  MATH  Google Scholar 

  90. S. Wongkaew, M. Caponigro, and A. Borzi. On the control through leadership of the Hegselmann-Krause opinion formation model. Mathematical Models and Methods in Applied Sciences, 25(03):565–585, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  91. C. A. Yates, R. Erban, C. Escudero, I. D. Couzin, J. Buhl, I. G. Kevrekidis, P. K. Maini, and D. J. T. Sumpter. Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National Academy of Sciences, 106(14):5464–5469, 2009.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the partial support of the NSF Project “KI-Net,” DMS Grant # 1107444.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nastassia Pouradier Duteil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Aydoğdu, A. et al. (2017). Interaction Network, State Space, and Control in Social Dynamics. In: Bellomo, N., Degond, P., Tadmor, E. (eds) Active Particles, Volume 1 . Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-49996-3_3

Download citation

Publish with us

Policies and ethics