Skip to main content

Bounded Pushdown Dimension vs Lempel Ziv Information Density

  • Chapter
  • First Online:
Computability and Complexity

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10010))

  • 1034 Accesses

Abstract

In this paper we introduce a variant of pushdown dimension called bounded pushdown (BPD) dimension, that measures the density of information contained in a sequence, relative to a BPD automata, i.e. a finite state machine equipped with an extra infinite memory stack, with the additional requirement that every input symbol only allows a bounded number of stack movements. BPD automata are a natural real-time restriction of pushdown automata. We show that BPD dimension is a robust notion by giving an equivalent characterization of BPD dimension in terms of BPD compressors. We then study the relationships between BPD compression, and the standard Lempel-Ziv (LZ) compression algorithm, and show that in contrast to the finite-state compressor case, LZ is not universal for bounded pushdown compressors in a strong sense: we construct a sequence that LZ fails to compress significantly, but that is compressed by at least a factor 2 by a BPD compressor. As a corollary we obtain a strong separation between finite-state and BPD dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong dimension in algorithmic information and computational complexity. SIAM J. Comput. 37, 671–705 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourke, C., Hitchcock, J.M., Vinodchandran, N.V.: Entropy rates and finite-state dimension. Theor. Comput. Sci. 349(3), 392–406 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dai, J.J., Lathrop, J.I., Lutz, J.H., Mayordomo, E.: Finite-state dimension. Theor. Comput. Sci. 310, 1–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Doty, D., Moser, P.: Finite-state dimension and lossy decompressors. Technical report, Technical report cs.CC/0609096, arXiv (2006)

    Google Scholar 

  5. Doty, D., Nichols, J.: Nichols.: pushdown dimension. Theor. Comput. Sci. 381, 105–123 (2007)

    Article  MATH  Google Scholar 

  6. Falconer, K.: The Geometry of Fractal Sets. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  7. Hariharan, S., Shankar, P.: Evaluating the role of context in syntax directed compression of xml documents. In: Proceedings of the 2006 IEEE Data Compression Conference (DCC 2006), p. 453 (2006)

    Google Scholar 

  8. Hitchcock, J.M., Lutz, J.H.: The fractal geometry of complexity. SIGACT News Complex. Theory Column 36, 24–38 (2005)

    Google Scholar 

  9. Huffman, D.A.: Canonical forms for information-lossless finite-state logical machines. Trans. Circ. Theory CT–6, 41–59 (1959)

    MATH  Google Scholar 

  10. League, C., Eng, K.: Type-based compression of xml data. In: Proceedings of the 2007 IEEE Data Compression Conference (DCC 2007), pp. 272–282 (2007)

    Google Scholar 

  11. Lutz, J.H.: Dimension in complexity classes. SIAM J. Comput. 32, 1236–1259 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lutz, J.H.: The dimensions of individual strings and sequences. Inf. Comput. 187, 49–79 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lutz, J.H.: Effective fractal dimensions. Math. Logic Q. 51, 62–72 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mayordomo, E.: Effective fractal dimension in algorithmic information theory. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms: Changing Conceptions of What is Computable, pp. 259–285. Springer, New York (2008)

    Chapter  Google Scholar 

  15. Mayordomo, E., Moser, P., Perifel, S.: Polylog space compression, pushdown compression, and lempel-ziv are incomparable. Theory Comput. Syst. 48, 731–766 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sheinwald, D., Lempel, A., Ziv, J.: On compression with two-way head machines. In: Data Compression Conference, pp. 218–227 (1991)

    Google Scholar 

  17. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theor. 24(5), 530–536 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Mayordomo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Albert, P., Mayordomo, E., Moser, P. (2017). Bounded Pushdown Dimension vs Lempel Ziv Information Density. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds) Computability and Complexity. Lecture Notes in Computer Science(), vol 10010. Springer, Cham. https://doi.org/10.1007/978-3-319-50062-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50062-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50061-4

  • Online ISBN: 978-3-319-50062-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics