Skip to main content

Understanding Novel Superconductors with Ab Initio Calculations

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

This chapter gives an overview of the progress in the field of computational superconductivity. Following the MgB2 discovery (2001), there has been an impressive acceleration in the development of methods based on density functional theory to compute the critical temperature and other physical properties of actual superconductors from first principles. State-of-the-art ab initio methods have reached predictive accuracy for conventional (phonon-mediated) superconductors, and substantial progress is being made also for unconventional superconductors. The aim of this chapter is to give an overview of the existing computational methods for superconductivity and present selected examples of material discoveries that exemplify the main advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    (This result is generally accepted, although DFT+DMFT studies evidenced a strong renormalization of some phonon modes, due to strong electronic correlations (Mandal et al. 2014) ep coupling has also been suggested to play a primary role in the enhancement of the superconducting Tc in FeSe monolayers grown on SrTiO3 (Huang and Hoffman 2017), although in this case, the modes involved in the pairing belong to the substrate.)

References

  • Aichhorn M, Pourovskii L, Georges A (2011) Importance of electronic correlations for structural and magnetic properties of the iron pnictide superconductor lafeaso. Phys Rev B 84:054529

    Article  ADS  Google Scholar 

  • Akashi R, Arita R (2013) Development of density-functional theory for a plasmon-assisted superconducting state: application to lithium under high pressures. Phys Rev Lett 111:057006

    Article  ADS  Google Scholar 

  • Akashi R, Sano W, Arita R, Tsuneyuki S (2016) Possible “magnéli” phases and self-alloying in the superconducting sulfur hydride. Phys Rev Lett 117:075503

    Article  ADS  Google Scholar 

  • Allen P, Dynes R (1975) Transition temperature of strong-coupled superconductors reanalyzed. Phys Rev B 12:905

    Article  ADS  Google Scholar 

  • Allen P, Mitrovic B (1982) Theory of superconducting tc. In: Solid State Physics, vol 37. Academic, New York, pp 1–92

    Google Scholar 

  • An JM, Pickett WE (2001) Superconductivity of MgB2: covalent bonds driven metallic. Phys Rev Lett 86(19):4366–4369

    Article  ADS  Google Scholar 

  • Andersen O, Boeri L (2011) On the multi-orbital band structure and itinerant magnetism of iron-based superconductors. Annalen der Physik 523(1–2):8–50

    Article  ADS  MATH  Google Scholar 

  • Ashcroft N (1968) Metallic hydrogen: a high-temperature superconductor? Phys Rev Lett 21:1748–1749

    Article  ADS  Google Scholar 

  • Ashcroft N (2004) Hydrogen dominant metallic alloys: high temperature superconductors? Phys Rev Lett 92:187002

    Article  ADS  Google Scholar 

  • Bardeen J, Cooper LN, Schrieffer JR (1957) Theory of superconductivity. Phys Rev 108:1175

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Baroni S, de Gironcoli S, Corso AD, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515

    Article  ADS  Google Scholar 

  • Basov DN, Chubukov AV (2011) Manifesto for a higher Tc. Nat Phys 7:272 EP Perspective

    Article  ADS  Google Scholar 

  • Bednorz J, Mueller K (1986) Possible high Tc superconductivity in the Ba-La-Cu-O system. Zeit Phys B 64:189

    Article  ADS  Google Scholar 

  • Berk NF, Schrieffer JR (1966) Effect of ferromagnetic spin correlations on superconductivity. Phys Rev Lett 17:433–435

    Article  ADS  Google Scholar 

  • Bernstein N, Hellberg CS, Johannes MD, Mazin II, Mehl MJ (2015) What superconducts in sulfur hydrides under pressure and why. Phys Rev B 91:060511

    Article  ADS  Google Scholar 

  • Bhaumik A, Sachan R, Narayan J (2017) High-temperature superconductivity in boron-doped q-carbon. ACS Nano 11(6):5351–5357. PMID:28448115

    Article  Google Scholar 

  • Blase X, Adessi C, Connétable D (2004) Role of the dopant in the superconductivity of diamond. Phys Rev Lett 93:237004

    Article  ADS  Google Scholar 

  • Boeri L, Bachelet G, Cappelluti E, Pietronero L (2002) Small fermi energy and phonon anharmonicity in mgb2 and related compounds. Phys Rev B 65:214501

    Article  ADS  Google Scholar 

  • Boeri L, Kortus J, Andersen OK (2004) Three-dimensional mgb2-type superconductivity in hole-doped diamond. Phys Rev Lett 93:237002

    Article  ADS  Google Scholar 

  • Boeri L, Cappelluti E, Pietronero L (2005) Small fermi energy, zero-point fluctuations, and nonadiabaticity in Mgb2. Phys Rev B 71:012501

    Article  ADS  Google Scholar 

  • Boeri L, Bachelet GB, Giantomassi M, Andersen OK (2007) Electron-phonon interaction in graphite intercalation compounds. Phys Rev B 76:064510

    Article  ADS  Google Scholar 

  • Boeri L, Dolgov OV, Golubov AA (2008) Is lafeaso1−xfx an electron-phonon superconductor? Phys Rev Lett 101:026403

    Article  ADS  Google Scholar 

  • Boeri L, Calandra M, Mazin II, Dolgov OV, Mauri F (2010) Effects of magnetism and doping on the electron-phonon coupling in bafe2as2. Phys Rev B 82:020506

    Article  ADS  Google Scholar 

  • Borinaga M, Errea I, Calandra M, Mauri F, Bergara A (2016) Anharmonic effects in atomic hydrogen: superconductivity and lattice dynamical stability. Phys Rev B 93:174308

    Article  ADS  Google Scholar 

  • Boschker H, Mannhart J (2017) Quantum-matter heterostructures. Ann Rev Condens Matter Phys 8(1):145–164

    Article  ADS  Google Scholar 

  • Bustarret E, Marcenat C, Achatz P, Kačmarčik J, Lévy F, Huxley A, Ortéga L, Bourgeois E, Blase X, Débarre D, Boulmer J (2006) Superconductivity in doped cubic silicon. Nature 444:465

    Article  ADS  Google Scholar 

  • Calandra M, Mauri F (2005) Theoretical explanation of superconductivity in c6Ca. Phys Rev Lett 95:237002

    Article  ADS  Google Scholar 

  • Calandra M, Vast N, Mauri F (2004) Superconductivity from doping boron icosahedra. Phys Rev B 69:224505

    Article  ADS  Google Scholar 

  • Calandra M, Profeta G, Mauri F (2010) Adiabatic and nonadiabatic phonon dispersion in a wannier function approach. Phys Rev B 82:165111

    Article  ADS  Google Scholar 

  • Capitani F, Langerome B, Brubach JB, Roy P, Drozdov A, Eremets MI, Nicol EJ, Carbotte JP, Timusk T (2017) Spectroscopic evidence of a new energy scale for superconductivity in h3s. Nat Phys 13:859 EP Article

    Article  ADS  Google Scholar 

  • Carbotte JP (1990) Properties of boson-exchange superconductors. Rev Mod Phys 62:1027–1157

    Article  ADS  Google Scholar 

  • Casula M, Calandra M, Mauri F (2012) Local and nonlocal electron-phonon couplings in k3 picene and the effect of metallic screening. Phys Rev B 86:075445

    Article  ADS  Google Scholar 

  • Chang KJ, Dacorogna MM, Cohen ML, Mignot JM, Chouteau G, Martinez G (1985) Superconductivity in high-pressure metallic phases of si. Phys Rev Lett 54:2375–2378

    Article  ADS  Google Scholar 

  • Choi JH, David R, Hong S, Cohen ML, Louie SG (2002) The origin of the anomalous superconducting properties of MgB2. Nature 418:758

    Article  ADS  Google Scholar 

  • Christoph Heil LB, Bachelet GB (2018) No superconductivity in iron polyhydrides at high pressures. arXiv preprint, arXiv:1804.03572

    Google Scholar 

  • Chu C, Deng L, Lv B (2015) Hole-doped cuprate high temperature superconductors. Phys C Supercond Appl 514:290–313. Superconducting materials: conventional, unconventional and undetermined

    Article  ADS  Google Scholar 

  • Chubukov AV, Efremov DV, Eremin I (2008) Magnetism, superconductivity, and pairing symmetry in iron-based superconductors. Phys Rev B 78:134512

    Article  ADS  Google Scholar 

  • Cohen M, Anderson P (1972) Superconductivity in d − and f − band metals. Amer Inst of Phys, New York

    Google Scholar 

  • Csaniy G, Littlewood PB, Nevidomskyy AH, Pickard CJ, Simons BD (2005) The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds. Nat Phys 1:42

    Article  Google Scholar 

  • Cudazzo P, Profeta G, Sanna A, Floris A, Continenza A, Massidda S, Gross EKU (2008) Ab initio description of high-temperature superconductivity in dense molecular hydrogen. Phys Rev Lett 100:257001

    Article  ADS  Google Scholar 

  • Curtarolo S, Hart GLW, Buongiorno Nardelli M, Mingo N, Sanvito S, Levy O (2013) The high-throughput highway to computational materials design. Nat Mater 12:191–201

    Article  ADS  Google Scholar 

  • Dalladay-Simpson EG, Howie RT (2016) Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature 529:63–67

    Article  ADS  Google Scholar 

  • de’ Medici L (2017) Hund’s metals, explained. arXiv/cond-mat/1707.03282

    Google Scholar 

  • de’ Medici L, Mravlje J, Georges A (2011) Janus-faced influence of Hund’s rule coupling in strongly correlated materials. Phys Rev Lett 107:256401

    Google Scholar 

  • de’ Medici L, Giovannetti G, Capone M (2014) Selective Mott physics as a key to iron superconductors. Phys Rev Lett 112:177001

    Google Scholar 

  • de’ Medici L (2017) Hund’s induced fermi-liquid instabilities and enhanced quasiparticle interactions. Phys Rev Lett 118:167003

    Google Scholar 

  • Dias RP, Silvera IF (2017) Observation of the Wigner-Huntington transition to metallic hydrogen. Science 355(6326):715–718

    Article  ADS  Google Scholar 

  • Drozdov AP, Eremets MI, Troyan IA, Ksenofontov V, Shylin SI (2015a) Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525:73–76

    Article  ADS  Google Scholar 

  • Drozdov A, Eremets MI, Troyan IA (2015b) Superconductivity above 100 K in PH3 at high pressures. arXiv/cond-mat/1508.06224

    Google Scholar 

  • Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W, Cui T (2014) Pressure-induced metallization of dense (h2s)2h2 with high-tc superconductivity. Sci Rep 4:6968

    Article  ADS  Google Scholar 

  • Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets MI, Drozdov AP, Troyan IA, Hirao N, Ohishi Y (2016) Crystal structure of the superconducting phase of sulfur hydride. Nat Phys 12:835 EP

    Article  ADS  Google Scholar 

  • Ekimov EA, Sidorov VA, Bauer ED, Mel’nik N, Curro NJ, Thompson J, Stishov S (2004) Superconductivity in diamond. Nature 428:542

    Article  ADS  Google Scholar 

  • Eliashberg GM (1960) Interactions between electrons and lattice vibrations in a superconductor Sov Phys JETP 11:696

    Google Scholar 

  • Eremets MI, Trojan IA, Medvedev SA, Tse JS, Yao Y (2008) Superconductivity in hydrogen dominant materials: silane. Science 319(5869):1506–1509

    Article  ADS  Google Scholar 

  • Eremets M, Troyan I, Drozdov A (2017) Low temperature phase diagram of hydrogen at pressures up to 380 GPa. A possible metallic phase at 360 GPa and 200 K. arXiv/cond-mat 1601.04479

    Google Scholar 

  • Eremets M, Drozdov AP (2017) Comments on the claimed observation of the wigner-huntington transition to metallic hydrogen. arxiv-condmat/1702.05125

    Google Scholar 

  • Errea I, Calandra M, Mauri F (2014) Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: application to platinum and palladium hydrides. Phys Rev B 89:064302

    Article  ADS  Google Scholar 

  • Errea I, Calandra M, Pickard CJ, Nelson J, Needs RJ, Li Y, Liu H, Zhang Y, Ma Y, Mauri F (2015) High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys Rev Lett 114:157004

    Article  ADS  Google Scholar 

  • Errea I, Calandra M, Pickard CJ, Nelson JR, Needs RJ, Li Y, Liu H, Zhang Y, Ma Y, Mauri F (2016) Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system. Nature 532:81–84

    Article  ADS  Google Scholar 

  • Essenberger F, Buczek P, Ernst A, Sandratskii L, Gross EKU (2012) Paramagnons in FeSe close to a magnetic quantum phase transition: ab initio study. Phys Rev B 86:060412

    Article  ADS  Google Scholar 

  • Essenberger F, Sanna A, Linscheid A, Tandetzky F, Profeta G, Cudazzo P, Gross EKU (2014) Superconducting pairing mediated by spin fluctuations from first principles. Phys Rev B 90:214504

    Article  ADS  Google Scholar 

  • Essenberger F, Sanna A, Buczek P, Ernst A, Sandratskii L, Gross EKU (2016) Ab initio theory of iron-based superconductors. Phys Rev B 94:014503

    Article  ADS  Google Scholar 

  • Fernandes RM, Chubukov AV, Schmalian J (2014) What drives nematic order in iron-based superconductors? Nat Phys 10:97 EP Review Article

    Article  ADS  Google Scholar 

  • Flores-Livas JA, Sanna A, Graužinytė M, Davydov A, Goedecker S, Marques MAL (2017) Emergence of superconductivity in doped h2o ice at high pressure. Sci Rep, 7:6825 https://doi.org/10.1038/s41598-017-07145-4 arxiv-condmat/1610.04110

  • Flores-Livas JA, Amsler M, Heil C, Sanna A, Boeri L, Profeta G, Wolverton C, Goedecker S, Gross EKU (2016) Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure. Phys Rev B 93:020508

    Article  ADS  Google Scholar 

  • Flores-Livas JA, Sanna A, Drozdov AP, Boeri L, Profeta G, Eremets M, Goedecker S (2017) Interplay between structure and superconductivity: metastable phases of phosphorus under pressure. Phys Rev Mater 1:024802

    Article  Google Scholar 

  • Fu Y, Du X, Zhang L, Peng F, Zhang M, Pickard CJ, Needs RJ, Singh DJ, Zheng W, Ma Y (2016) High-pressure phase stability and superconductivity of pnictogen hydrides and chemical trends for compressed hydrides. Chem Mater 28(6):1746–1755

    Article  Google Scholar 

  • Gaspari GD, Gyorffy BL (1972) Electron-phonon interactions, d resonances, and superconductivity in transition metals. Phys Rev Lett 28:801–805

    Article  ADS  Google Scholar 

  • Ge JF, Liu ZL, Liu C, Gao CL, Qian D, Xue QK, Liu Y, Jia JF (2014) Superconductivity above 100 k in single-layer FeSe films on doped srtio3. Nat Mater 14:285 EP

    Google Scholar 

  • Georges A, de’ Medici L, Mravlje J (2013) Strong correlations from Hund’s coupling. Ann Rev Condens Matter Phys 4(1):137–178

    Article  ADS  Google Scholar 

  • Giustino F (2017) Electron-phonon interactions from first principles. Rev Mod Phys 89:015003

    Article  ADS  MathSciNet  Google Scholar 

  • Giustino F, ML Cohen, Louie SG (2007a) Electron-phonon interaction using wannier functions. Phys Rev B 76:165108

    Article  ADS  Google Scholar 

  • Giustino F, Yates JR, Souza I, Cohen ML, Louie SG (2007b) Electron-phonon interaction via electronic and lattice Wannier functions: Superconductivity in boron-doped diamond reexamined. Phys Rev Lett 98:047005

    Article  ADS  Google Scholar 

  • Goncharov AF, Struzhkin VV (2017) Comment on observation of the wigner-huntington transition to metallic hydrogen. arXiv preprint arXiv:1702.04246

    Google Scholar 

  • Goncharov AF, Lobanov SS, Kruglov I, Zhao XM, Chen XJ, Oganov AR, Konôpková Z, Prakapenka VB (2016) Hydrogen sulfide at high pressure: change in stoichiometry. Phys Rev B 93:174105

    Article  ADS  Google Scholar 

  • Gonnelli RS, Daghero D, Ummarino GA, Stepanov VA, Jun J, Kazakov SM, Karpinski J (2002) Direct evidence for two-band superconductivity in mgb2 single crystals from directional point-contact spectroscopy in magnetic fields. Phys Rev Lett 89:247004

    Article  ADS  Google Scholar 

  • Gor’kov LP, Kresin VZ (2018) Colloquium: high pressure and road to room temperature superconductivity. Rev Mod Phys 90:011001

    Article  ADS  MathSciNet  Google Scholar 

  • Graser S, Maier TA, Hirschfeld PJ, Scalapino DJ (2009) Near-degeneracy of several pairing channels in multiorbital models for the fe pnictides. New J Phys 11(2):025016

    Article  Google Scholar 

  • Grimaldi C, Pietronero L, Straessler S (1995) Nonadiabatic superconductivity: electron-phonon interaction beyond Migdal’s theorem. Phys Rev Lett 75:1158

    Article  ADS  Google Scholar 

  • Gunnarsson O (1997) Superconductivity in fullerides. Rev Mod Phys 69:575–606

    Article  ADS  Google Scholar 

  • Gurevich A (2011) To use or not to use cool superconductors? Nature Mat 10:255

    Article  ADS  Google Scholar 

  • Hamlin J (2015) Superconductivity in the metallic elements at high pressures. Phys C Supercond Appl 514:59–76. Superconducting materials: conventional, unconventional and undetermined

    Article  ADS  Google Scholar 

  • Hansmann P, Arita R, Toschi A, Sakai S, Sangiovanni G, Held K (2010) Dichotomy between large local and small ordered magnetic moments in iron-based superconductors. Phys Rev Lett 104:197002

    Article  ADS  Google Scholar 

  • Haule K, Kotliar G (2009) Coherence-incoherence crossover in the normal state of iron oxypnictides and importance of Hund’s rule coupling. New J Phys 11(2):025021

    Article  Google Scholar 

  • Heil C, Boeri L (2015) Influence of bonding on superconductivity in high-pressure hydrides. Phys Rev B 92:060508

    Article  ADS  Google Scholar 

  • Hirschfeld PJ, Korshunov MM, Mazin II (2011) Gap symmetry and structure of fe-based superconductors. Rep Prog Phys 74(12):124508

    Article  ADS  Google Scholar 

  • Hoesch M, Fukuda T, Mizuki J, Takenouchi T, Kawarada H, Sutter JP, Tsutsui S, Baron AQR, Nagao M, Takano Y (2007) Phonon softening in superconducting diamond. Phys Rev B 75:140508

    Article  ADS  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Article  ADS  MathSciNet  Google Scholar 

  • Huang D, Hoffman JE (2017) Monolayer FeSe on srtio3. Ann Rev Condens Matter Phys 8(1):311–336

    Article  ADS  Google Scholar 

  • Johnston DC (2010) The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv Phys 59(6):803–1061

    Article  ADS  Google Scholar 

  • Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 61:689–746

    Article  ADS  Google Scholar 

  • José FL, Sanna A, Gross EKU (2016) High temperature superconductivity in sulfur and selenium hydrides at high pressure. Eur Phys J B 89(3):63

    Article  ADS  Google Scholar 

  • Kamihara Y, Watanabe T, Hirano M, Hosono H (2008) Iron-based layered superconductor LaOFeAs. J Am Chem Soc 130(11):3296–3297

    Article  Google Scholar 

  • Kasahara Y, Kuroki K, Yamanaka S, Taguchi Y (2015) Unconventional superconductivity in electron-doped layered metal nitride halides mnx (m=ti, zr, hf; x=cl, br, i). Phys C Supercond Appl 514:354–367. Superconducting materials: conventional, unconventional and undetermined

    Article  ADS  Google Scholar 

  • Kim JS, Boeri L, Kremer RK, Razavi FS (2006) Effect of pressure on superconducting ca-intercalated graphite Cac6. Phys Rev B 74:214513

    Article  ADS  Google Scholar 

  • Kim JS, Boeri L, O’Brien JR, Razavi FS, Kremer RK (2007) Superconductivity in heavy alkaline-earth intercalated graphites. Phys Rev Lett 99:027001

    Article  ADS  Google Scholar 

  • Klemm RA (2015) Pristine and intercalated transition metal dichalcogenide superconductors. Phys C Supercond Appl 514:86–94. Superconducting materials: conventional, unconventional and undetermined

    Article  ADS  Google Scholar 

  • Kolmogorov AN, Curtarolo S (2006) Prediction of different crystal structure phases in metal borides: a lithium monoboride analog to Mgb2. Phys Rev B 73:180501

    Article  ADS  Google Scholar 

  • Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H (2008) Unconventional pairing originating from the disconnected fermi surfaces of superconducting lafeaso1−xfx. Phys Rev Lett 101:087004

    Article  ADS  Google Scholar 

  • Kuroki K, Usui H, Onari S, Arita R, Aoki H (2009) Pnictogen height as a possible switch between high-Tc nodeless and low-Tc nodal pairings in the iron-based superconductors. Phys Rev B 79:224511

    Article  ADS  Google Scholar 

  • Kokail C, Heil C, Boeri L (2016) Search for high-Tc conventional superconductivity at megabar pressures in the lithium-sulfur system. Phys Rev B 94:060502

    Article  ADS  Google Scholar 

  • Kokail C, von der Linden W, Boeri L (2017) Prediction of high-Tc conventional superconductivity in the ternary lithium borohydride system. Phys Rev Mater 1:074803

    Article  Google Scholar 

  • Kong Y, Dolgov OV, Jepsen O, Andersen OK (2001) Electron-phonon interaction in the normal and superconducting states of MgB2. Phys Rev B 64(2):020501

    Article  ADS  Google Scholar 

  • Kortus J, Mazin II, Belashchenko KD, VP Antropov, Boyer LL (2001) Superconductivity of metallic boron in mgb2. Phys Rev Lett 86:4656–4659

    Article  ADS  Google Scholar 

  • Kotliar G, Savrasov SY, Haule K, Oudovenko VS, Parcollet O, Marianetti CA (2006) Electronic structure calculations with dynamical mean-field theory. Rev Mod Phys 78:865–951

    Article  ADS  Google Scholar 

  • Kvashnin AG, Kruglov IA, Semenok DV, Oganov AR (2018) Iron superhydrides feh5 and feh6: stability, electronic properties, and superconductivity. J Phys Chem C 122(8):4731–4736

    Article  Google Scholar 

  • Lazzeri M, Calandra M, Mauri F (2003) Anharmonic phonon frequency shift in mgb2. Phys Rev B 68:220509

    Article  ADS  Google Scholar 

  • Lee KW, Pickett WE (2004) Superconductivity in boron-doped diamond. Phys Rev Lett 93:237003

    Article  ADS  Google Scholar 

  • Li Y, Gao G, Xie Y, Ma Y, Cui T, Zou G (2010) Superconductivity at ˜100 k in dense sih4(h2)2 predicted by first principles. Proc Nat Acad Sci 107(36):15708–15711

    Article  ADS  Google Scholar 

  • Linschied A, Sanna A, Gross EKU (2015a) Ab-initio calculation of a pb single layer on a si substrate: two-dimensionality and superconductivity. airXiv cond-mat/1503.00977

    Google Scholar 

  • Linscheid A, Sanna A, Floris A, Gross EKU (2015b) First-principles calculation of the real-space order parameter and condensation energy density in phonon-mediated superconductors. Phys Rev Lett 115:097002

    Article  ADS  Google Scholar 

  • Liu AY, Mazin II, Kortus J (2001) Beyond Eliashberg superconductivity in mgb2: anharmonicity, two-phonon scattering, and multiple gaps. Phys Rev Lett 87:087005

    Article  ADS  Google Scholar 

  • Liu H, Naumov II, Hoffmann R, Ashcroft NW, Hemley RJ (2017) Potential high-tc superconducting lanthanum and yttrium hydrides at high pressure. Proc Natl Acad Sci USA 114(27):6990–6995

    Article  ADS  Google Scholar 

  • Ludbrook BM, Levy G, Nigge P, Zonno M, Schneider M, Dvorak DJ, Veenstra CN, Zhdanovich S, Wong D, Dosanjh P, Straßer C, Stöhr A, Forti S, Ast CR, Starke U, Damascelli A (2015) Evidence for superconductivity in li-decorated monolayer graphene. Proc Nat Acad Sci 112(38):11795–11799

    Article  ADS  Google Scholar 

  • Lüders M, Marques MAL, Lathiotakis NN, Floris A, Profeta G, Fast L, Continenza A, Massidda S, Gross EKU (2005) Ab initio. Phys Rev B 72:024545

    Article  ADS  Google Scholar 

  • Lukas H, Fries SG, Sundman B (2007) Computational thermodynamics: the Calphad method. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Majumdar A, Tse JS, Wu M, Yao Y (2017) Superconductivity in feh5. Phys Rev B 96:201107

    Article  ADS  Google Scholar 

  • Mandal S, Cohen RE, Haule K (2014) Strong pressure-dependent electron-phonon coupling in FeSe. Phys Rev B 89:220502

    Article  ADS  Google Scholar 

  • Margine ER, Giustino F (2013) Anisotropic migdal-Eliashberg theory using wannier functions. Phys Rev B 87:024505

    Article  ADS  Google Scholar 

  • Marsiglio F, Carbotte JP (1986) Strong-coupling corrections to Bardeen-Cooper-Schrieffer ratios. Phys Rev B 33:6141–6146

    Article  ADS  Google Scholar 

  • Marques MAL, Lüders M, Lathiotakis NN, Profeta G, Floris A, Fast L, Continenza A, Gross EKU, Massidda S (2005) Ab initio. Phys Rev B 72:024546

    Article  ADS  Google Scholar 

  • Marzari N, Mostofi AA, Yates JR, Souza I, Vanderbilt D (2012) Maximally localized Wannier functions: theory and applications. Rev Mod Phys 84:1419–1475

    Article  ADS  Google Scholar 

  • Matthias BT, Geballe TH, Andres K, Corenzwit E, Hull GW, Maita JP (1968) Superconductivity and antiferromagnetism in boron-rich lattices. Science 159(3814):530–530

    Article  ADS  Google Scholar 

  • Mazin II, Johannes MD (2008) A key role for unusual spin dynamics in ferropnictides. Nat Phys 5:141 EP Article

    Article  ADS  Google Scholar 

  • Mazin II, Andersen OK, Jepsen O, Dolgov OV, Kortus J, Golubov AA, Kuz’menko AB, van der Marel D (2002) Superconductivity in mgb2: clean or dirty? Phys Rev Lett 89:107002

    Article  ADS  Google Scholar 

  • Mazin II, Singh DJ, Johannes MD, Du MH (2008a) Unconventional superconductivity with a sign reversal in the order parameter of lafeaso1−xfx. Phys Rev Lett 101:057003

    Article  ADS  Google Scholar 

  • Mazin II, Johannes MD, Boeri L, Koepernik K, Singh DJ (2008b) Problems with reconciling density functional theory calculations with experiment in ferropnictides. Phys Rev B 78:085104

    Article  ADS  Google Scholar 

  • Meissner W, Ochsenfeld R (1933) Ein neuer effekt bei eintritt dernsupraleitfŁaehigkeit. Naturwissenschaften 21:787

    Article  ADS  Google Scholar 

  • McMahon JM, Ceperley DM (2011) High-temperature superconductivity in atomic metallic hydrogen. Phys Rev B 84:144515

    Article  ADS  Google Scholar 

  • McMahon JM, Morales MA, Pierleoni C, Ceperley DM (2012) The properties of hydrogen and helium under extreme conditions. Rev Mod Phys 84:1607–1653

    Article  ADS  Google Scholar 

  • Migdal A (1958) Migdal’s theorem. Sov Phys JETP 34:996

    Google Scholar 

  • Miyake T, Nakamura K, Arita R, Imada M (2010) Comparison of ab initio low-energy models for LaFePo, lafeaso, bafe2as2, LiFeAs, FeSe, and FeTe: electron correlation and covalency. J Phys Soc Japan 79(4):044705

    Article  ADS  Google Scholar 

  • Monni M, Bernardini F, Sanna A, Profeta G, Massidda S (2017) Origin of the critical temperature discontinuity in superconducting sulfur under high pressure. Phys Rev B 95:064516

    Article  ADS  Google Scholar 

  • Morel P, Anderson PW (1962) Calculation of the superconducting state parameters with retarded electron-phonon interaction. Phys Rev 125:1263–1271

    Article  ADS  Google Scholar 

  • Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J (2001) Superconductivity at 39 K in magnesium diboride. Nature (London) 410:63

    Article  ADS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  ADS  Google Scholar 

  • Oliveira LN, Gross EKU, Kohn W (1988) Density-functional theory for superconductors. Phys Rev Lett 60:2430–2433

    Article  ADS  Google Scholar 

  • Onnes HK (1913) The resistance of pure mercury at helium temperatures. Commun Phys Lab Univ Leiden 133:37

    Google Scholar 

  • Ortenzi L, Mazin II, Blaha P, Boeri L (2012) Accounting for spin fluctuations beyond local spin density approximation in the density functional theory. Phys Rev B 86:064437

    Article  ADS  Google Scholar 

  • Pace EJ, Binns J, Alvarez MP, Dalladay-Simpson P, Gregoryanz E, Howie RT (2017) Synthesis and stability of hydrogen selenide compounds at high pressure. J Chem Phys 147(18):184303

    Article  ADS  Google Scholar 

  • Paglione J, Greene RL (2010) High-temperature superconductivity in iron-based materials. Nat Phys 6:645 EP Review article

    Article  ADS  Google Scholar 

  • Pépin C, Loubeyre P, Occelli F, Dumas P (2015) Synthesis of lithium polyhydrides above 130 GPA at 300 K. Proc Nat Acad Sci 112(25):7673–7676

    Article  ADS  Google Scholar 

  • Pépin CM, Geneste G, Dewaele A, Mezouar M, Loubeyre P (2017) Synthesis of feh5: a layered structure with atomic hydrogen slabs. Science 357(6349):382–385

    Article  ADS  Google Scholar 

  • Pietronero L, Straessler S, Grimaldi C (1995) Nonadiabatic superconductivity I. Vertex corrections for the electron-phonon interactions. Phys Rev B 52:10516

    Article  ADS  Google Scholar 

  • Platt C, Thomale R, Honerkamp C, Zhang SC, Hanke W (2012) Mechanism for a pairing state with time-reversal symmetry breaking in iron-based superconductors. Phys Rev B 85:180502

    Article  ADS  Google Scholar 

  • Profeta G, Franchini C, Lathiotakis NN, Floris A, Sanna A, Marques MAL, Lüders M, Massidda S, Gross EKU, Continenza A (2006) Superconductivity in lithium, potassium, and aluminum under extreme pressure: a first-principles study. Phys Rev Lett 96:047003

    Article  ADS  Google Scholar 

  • Profeta G, Calandra M, Mauri F (2012) Phonon-mediated superconductivity in graphene by lithium deposition. Nature Phys 8:131–134

    Article  ADS  Google Scholar 

  • Quan Y, Pickett WE (2016) Van hove singularities and spectral smearing in high-temperature superconducting h3S. Phys Rev B 93:104526

    Article  ADS  Google Scholar 

  • Rosner H, Kitaigorodsky A, Pickett WE (2002) Prediction of high Tc superconductivity in hole-doped libc. Phys Rev Lett 88:127001

    Article  ADS  Google Scholar 

  • Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000

    Article  ADS  Google Scholar 

  • Sanna A (2017) Introduction to superconducting density functional theory. https://www.cond-mat.de/events/correl17/manuscripts/sanna.pdf

  • Sanna A, Profeta G, Floris A, Marini A, Gross EKU, Massidda S (2007) Anisotropic gap of superconducting cac6: a first-principles density functional calculation. Phys Rev B 75:020511

    Article  ADS  Google Scholar 

  • Sanna A, Flores-Livas JA, Davydov A, Profeta G, Dewhurst K, Sharma S, Gross EKU (2018) Ab initio Eliashberg theory: making genuine predictions of superconducting features. J Phys Soc Japan 87(4):041012

    Article  ADS  Google Scholar 

  • Sano W, Koretsune T, Tadano T, Akashi R, Arita R (2016) Effect of van hove singularities on high-Tc superconductivity in h3S. Phys Rev B 93:094525

    Article  ADS  Google Scholar 

  • Sato M, Ando Y (2017) Topological superconductors: a review. Rep Prog Phys 80(7):076501

    Article  ADS  MathSciNet  Google Scholar 

  • Satta G, Profeta G, Bernardini F, Continenza A, Massidda S (2001) Electronic and structural properties of superconducting mgb2, casi2, and related compounds. Phys Rev B 64:104507

    Article  ADS  Google Scholar 

  • Savini G, Ferrari AC, Giustino F (2010) First-principles prediction of doped graphane as a high-temperature electron-phonon superconductor. Phys Rev Lett 105:037002

    Article  ADS  Google Scholar 

  • Savrasov SY, Savrasov DY (1996) Electron-phonon interactions and related physical properties of metals from linear-response theory. Phys Rev B 54:16487

    Article  ADS  Google Scholar 

  • Scalapino D (1969) Superconductivity. Dekker, New York, pp 1–92

    Google Scholar 

  • Schilling A, Cantoni M, Guo JD, Ott HR (1993) Superconductivity above 130 K in the hg-ba-ca-cu-o system. Nature 363:56 EP

    Article  ADS  Google Scholar 

  • Schickling T, Gebhard F, Bünemann J, Boeri L, Andersen OK, Weber W (2012) Gutzwiller theory of band magnetism in laofeas. Phys Rev Lett 108:036406

    Article  ADS  Google Scholar 

  • Shamp A, Terpstra T, Bi T, Falls Z, Avery P, Zurek E (2016) Decomposition products of phosphine under pressure: Ph2 stable and superconducting? J Am Chem Soc 138(6):1884–1892. PMID:26777416

    Article  Google Scholar 

  • Sharma S, Gross EKU, Sanna A, Dewhurst JK (2018) Source-free exchange-correlation magnetic fields in density functional theory. J Chem Theory Comput 14(3):1247–1253. PMID:29420031

    Article  Google Scholar 

  • Skornyakov SL, Katanin AA, Anisimov VI (2011) Linear-temperature dependence of static magnetic susceptibility in lafeaso from dynamical mean-field theory. Phys Rev Lett 106:047007

    Article  ADS  Google Scholar 

  • Sohier T, Calandra M, Mauri F (2015) Density-functional calculation of static screening in two-dimensional materials: the long-wavelength dielectric function of graphene. Phys Rev B 91:165428

    Article  ADS  Google Scholar 

  • Sohier T, Calandra M, Mauri F (2017) Density functional perturbation theory for gated two-dimensional heterostructures: theoretical developments and application to flexural phonons in graphene. Phys Rev B 96:075448

    Article  ADS  Google Scholar 

  • Struzhkin VV, Kim DY, Stavrou E, Muramatsu T, Mao Hk, Pickard CJ, Needs RJ, Prakapenka VB, Goncharov AF (2016) Synthesis of sodium polyhydrides at high pressures. Nat Commun 7:12267 EP Article

    Article  ADS  Google Scholar 

  • Subedi A, Boeri L (2011) Vibrational spectrum and electron-phonon coupling of doped solid picene from first principles. Phys Rev B 84:020508

    Article  ADS  Google Scholar 

  • Subedi A, Zhang L, Singh DJ, Du MH (2008) Density functional study of FeS, FeSe, and FeTe: electronic structure, magnetism, phonons, and superconductivity. Phys Rev B 78:134514

    Article  ADS  Google Scholar 

  • Suhl H, Matthias BT, Walker LR (1959) Bardeen-Cooper-Schrieffer theory of superconductivity in the case of overlapping bands. Phys Rev Lett 3:552–554

    Article  ADS  MATH  Google Scholar 

  • Takano Y, Nagao M, Sakaguchi I, Tachiki M, Hatano T, Kobayashi K, Umezawa H, Kawarada H (2004) Superconductivity in diamond thin films well above liquid helium temperature. Appl Phys Lett 85(14):2851–2853

    Article  ADS  Google Scholar 

  • Thomale R, Platt C, Hu J, Honerkamp C, Bernevig BA (2009) Functional renormalization-group study of the doping dependence of pairing symmetry in the iron pnictide superconductors. Phys Rev B 80:180505

    Article  ADS  Google Scholar 

  • Toschi A, Arita R, Hansmann P, Sangiovanni G, Held K (2012) Quantum dynamical screening of the local magnetic moment in fe-based superconductors. Phys Rev B 86:064411

    Article  ADS  Google Scholar 

  • Vignale G, Singwi KS (1985) Effective two-body interaction in coulomb fermi liquids. Phys Rev B 32:2156–2166

    Article  ADS  Google Scholar 

  • Wang H, Tse JS, Tanaka K, Iitaka T, Ma Y (2012) Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc Natl Acad Sci USA 109(17):6463–6466

    Article  ADS  Google Scholar 

  • Weller TE, Ellerby M, Saxena SS, Smith RP, Skipper NT (2005) Superconductivity in the intercalated graphite compounds C6Yb and C6Ca. Nature Phys 1:39

    Article  ADS  Google Scholar 

  • Werner P, Gull E, Troyer M, Millis AJ (2008) Spin freezing transition and non-fermi-liquid self-energy in a three-orbital model. Phys Rev Lett 101:166405

    Article  ADS  Google Scholar 

  • Woodley SM, Catlow R (2008) Crystal structure prediction from first principles. Nature Mat 7:937–946

    Article  ADS  Google Scholar 

  • Wu MK, Ashburn JR, Torng CJ, Hor PH, Meng RL, Gao L, Huang ZJ, Wang YQ, Chu CW (1987) Superconductivity at 93 K in a new mixed-phase y-ba-cu-o compound system at ambient pressure. Phys Rev Lett 58:908–910

    Article  ADS  Google Scholar 

  • Yao Y, Klug DD, Sun J, Martoňák R (2009) Structural prediction and phase transformation mechanisms in calcium at high pressure. Phys Rev Lett 103:055503

    Article  ADS  Google Scholar 

  • Ye JT, Zhang YJ, Akashi R, Bahramy MS, Arita R, Iwasa Y (2012) Superconducting dome in a gate-tuned band insulator. Science 338(6111):1193–1196

    Article  ADS  Google Scholar 

  • Yi M, Zhang Y, Shen ZX, Lu D (2017) Role of the orbital degree of freedom in iron-based superconductors. npj Quantum Mater 2(1):57

    Google Scholar 

  • Yin ZP, Haule K, Kotliar G (2011) Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nat Mater 10:932

    Article  ADS  Google Scholar 

  • Yin ZP, Kutepov A, Kotliar G (2013) Correlation-enhanced electron-phonon coupling: applications of gw and screened hybrid functional to bismuthates, chloronitrides, and other high-Tc superconductors. Phys Rev X 3:021011

    Google Scholar 

  • Yokoya T, Nakamura T, Matsushita T, Muro T, Takano Y, Nagao M, Takenouchi T, Kawarada H, Oguchi T (2005) Origin of the metallic properties of heavily boron-doped superconducting diamond. Nature 438:647 EP

    Article  ADS  Google Scholar 

  • Zhang T, Cheng P, Li WJ, Sun YJ, Wang G, Zhu XG, He K, Wang L, Ma X, Chen X, Wang Y, Liu Y, Lin HQ, Jia JF, Xue QK (2010) Superconductivity in one-atomic-layer metal films grown on si(111). Nat Phys 6:104 EP

    Article  ADS  Google Scholar 

  • Zhang L, Wang Y, Lv J, Ma Y (2017) Materials discovery at high pressures. Nat Rev Mat 2:17005 EP. Review article

    Google Scholar 

  • Zurek E, Hoffmann R, Ashcroft N, Oganov AR, Lyakhov AO (2009) A little bit of lithium does a lot for hydrogen. Proc Natl Acad Sci USA 106(42):17640–17643

    Article  ADS  Google Scholar 

Download references

Acknowledgements

There are many people who, over the years, helped me to shape my view on superconductivity. Many of these encounters turned into friendships, and I am very grateful for that. A special thank goes to my mentors in Rome (Luciano Pietronero, Giovanni Bachelet) and Stuttgart (Jens Kortus and Ole Krogh Andersen), who introduced me to the field of superconductivity and electronic structure, as well as to all my collaborators and students, with whom I had the pleasure to work and argue on many topics. Thanks to José Flores-Livas, Christoph Heil, Renato Gonnelli, Bernhard Keimer, Jun Sung Kim, Rheinhard Kremer, Igor Mazin, Paolo Postorino, Gianni Profeta, and Antonio Sanna for the many discussions and projects we shared over the years.

I would never have completed this chapter without the help of my current office neighbor, Paolo Dore, who inquired about the status of the project almost every day, and of Luca de’ Medici, Christoph Heil, Antonio Sanna, and Alessandro Toschi, who gave me suggestion on parts of the manuscript at different stages. Finally, I would like to dedicate this work to the memory of two very special people, Sandro Massidda and Ove Jepsen, whom I will always remember for their kindness, culture, and enthusiasm for physics. I miss them both.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilia Boeri .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boeri, L. (2018). Understanding Novel Superconductors with Ab Initio Calculations. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_21-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics