Skip to main content

Insights on the Role of Fiber in Colonic Microbiota Health

  • Chapter
  • First Online:
Dietary Fiber in Health and Disease

Part of the book series: Nutrition and Health ((NH))

Abstract

The diet has been estimated to contribute to as much as 60% of microbiota composition variation with fiber and animal products being the most influential food components.

Fiber is the primary energy source for maintenance of a healthy bacterial community and source of bioactive fermentation metabolites such as short-chain fatty acids (SCFAs), especially butyrate, which is important for attenuating colonic and systemic inflammation for human health, including maintaining the colonic protective barrier against pathogenic bacteria.

Changing from a low fiber, meat based diet to a high fiber, plant based diet can significantly improve microbiota health within 24 hrs, but it may take over 10 days for major changes in primary enterotype identity to occur.

Western diets which contain approximately half of the recommended adequate intake levels of fiber, have led to a fiber which gap is a major factor responsible for microbiota dysbiosis, which predisposes individuals to increased colonic and systemic inflammation, insulin resistance associated with many chronic diseases, and increased frailty in older age.

Numerous intervention trials show that the increased intake of fiber-rich whole foods, fiber ingredients, or supplements such as prebiotics support a healthier microbiota ecosystem

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Janssen AWF, Kersten S. The role of the gut microbiota in metabolic health. FASEB J. 2015;29(8):3111–23.

    Article  CAS  PubMed  Google Scholar 

  2. Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20:779–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sonnenburg ED, Smits SA, Tikhonov M, et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529(7585):212–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Milani C, Ferrario C, Turroni F, et al. The human gut microbiota and its interactive connections to diet. J Hum Nutr Diet. 2016;29(5):539–46. doi:10.1111/jhn.12371.

    Article  CAS  PubMed  Google Scholar 

  5. Jia W, Li H, Zhao L, Nicholson JK. Gut Colonic microbiota: a potential new territory for drug targeting. Nat Rev Drug Discov. 2008;7(2):123–9.

    Article  CAS  PubMed  Google Scholar 

  6. Mazidi M, Rezaie P, Kengne AP, et al. Gut microbiome and metabolic syndrome. Diabetes Metab Syndr. 2016;10(2 Suppl 1):S150–7. doi:10.1016/j.dsx.2016.01.024.

    Article  PubMed  Google Scholar 

  7. Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–7.

    Article  CAS  PubMed  Google Scholar 

  8. Mariat D, Firmesse O, Levenez F, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123. doi:10.1186/1471-2180-9-123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Simpson HL, Campbell BJ. Review article: dietary fibre–microbiota interactions. Aliment Pharmacol Ther. 2015;42:158–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang C, Zhang M, Wang S, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010;4:232–41.

    Article  CAS  PubMed  Google Scholar 

  11. Claesson MJ, Jeffery IB, Conde S. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–85.

    CAS  PubMed  Google Scholar 

  12. Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Forum Nutr. 2015;7:17–44.

    Google Scholar 

  13. Cummings JH, Englyst HN. Fermentation in the human large intestine and the available substrates. Am J Clin Nutr. 1987;45(5 suppl):1243–55.

    CAS  PubMed  Google Scholar 

  14. Deehan C, Walter J. The fiber gap and the disappearing gut microbiome: implications for human nutrition. Trends Endocrinol Metab. 2016;27(5):239–41.

    Article  CAS  PubMed  Google Scholar 

  15. El Enshasy H, Malik K, Malek RA, et al. Anaerobic probiotics: the key microbes for human health. Adv Biochem Eng Biotechnol. 2016;156:397–431. doi:10.1007/10-2015-5008.

    PubMed  Google Scholar 

  16. Jew S, Abumweis SS, Jones PJ. Evolution of the human diet: linking our ancestral diet to modern functional foods as a means of chronic disease prevention. J Med Food. 2009;12(5):925–34.

    Article  CAS  PubMed  Google Scholar 

  17. Champ MM. Physiological aspects of resistant starch and in vivo measurements. J AOAC Int. 2004;87(3):749–55.

    CAS  PubMed  Google Scholar 

  18. Timm DA, Stewart ML, Hospattankar A, Slavin JL. Wheat dextrin, psyllium, and inulin produce distinct fermentation patterns, gas volumes, and short-chain fatty acid profiles in vitro. J Med Food. 2010;13(4):961–6.

    Article  CAS  PubMed  Google Scholar 

  19. Noack J, Timm D, Hospattankar A, Slavin J. Fermentation profiles of wheat dextrin, inulin and partially hydrolyzed guar gum using an in vitro digestion pretreatment and in vitro batch fermentation system model. Forum Nutr. 2013;5:1500–10.

    CAS  Google Scholar 

  20. Gutiérrez-Díaz I, Fernández-Navarro T, Sánchez B, et al. Mediterranean diet and faecal Colonic microbiota: a transversal study. Food Funct. 2016;7(5):2347–56. doi:10.1039/c6fo00105j.

    Article  PubMed  Google Scholar 

  21. Wu GD, Compher C, Chen EZ, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016;65(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  22. De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2015;65(11) doi:10.1136/gutjnl-2015-309957.

  23. Matijasic BB, Obermajer T, Lipoglavsek L, et al. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur J Nutr. 2014;53(4):1051–64.

    Article  CAS  PubMed  Google Scholar 

  24. Ou J, Carbonero F, Zoetendal EG, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr. 2013;98:111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin A, Bik EM, Costello EK, et al. Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States. PLoS One. 2013;8:e53838. doi:10.1371/journal.pone.0053838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zimmer J, Lange B, Frick J-S, et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr. 2012;66(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  27. Kabeerdoss J, Devi RS, Mary RR, et al. Faecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India. Br J Nutr. 2012;108:953–7.

    Article  CAS  PubMed  Google Scholar 

  28. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8.

    Article  Google Scholar 

  29. De Filippo C, Cavalieri D, di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691–6.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tap J, Furet JP, Bensaada M, et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol. 2015;17(12):4954–64.

    Article  CAS  PubMed  Google Scholar 

  31. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

    Article  CAS  PubMed  Google Scholar 

  32. Kim MS, Hwang SS, Park EJ, Bae JW. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ Microbiol Rep. 2013;5:765–75.

    Article  CAS  PubMed  Google Scholar 

  33. Klinder A, Shen Q, Heppel S, et al. Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota. Food Funct. 2016;7:1788–96.

    Article  CAS  PubMed  Google Scholar 

  34. Eid N, Osmanova H, Natchez C, et al. Impact of palm date consumption on microbiota growth and large intestinal health: a randomised, controlled, cross-over, human intervention study. Br J Nutr. 2015;114:1226–36.

    Article  CAS  PubMed  Google Scholar 

  35. Vendrame S, Guglielmetti S, Riso P, et al. Six-week consumption of a wild blueberry powder drink increases bifidobacteria in the human gut. J Agric Food Chem. 2011;59:12815–20.

    Article  CAS  PubMed  Google Scholar 

  36. Shinohara K, Chashi Y, Kawasumi K, et al. Effect of apple intake on fecal microbiota and metabolites in humans. Anaerobe. 2010;16(5):510–5.

    Article  CAS  PubMed  Google Scholar 

  37. Costabile A, Kolida S, Klinder A, et al. A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects. Br J Nutr. 2010;104:1007–17.

    Article  CAS  PubMed  Google Scholar 

  38. Heinritz SN, Weiss E, Eklund M, et al. Intestinal microbiota and microbial metabolites are changed in a pig model fed a high-fat/low-fiber or a low-fat/high-fiber diet. PLoS One. 2016;11(4):e0154329. doi:10.1371/journal.pone.0154329.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Ames NP, Tun HM, et al. High molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk. Front Microbiol. 2016;7:129. doi:10.3389/fmicb.2016.00129.

    PubMed  PubMed Central  Google Scholar 

  40. Martinez I, Lattimer JM, Hubach KL, et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2013;7:269–80.

    Article  CAS  PubMed  Google Scholar 

  41. Carvalho-Wells AL, Helmolz K, Nodet C, et al. Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: a human feeding study. Br J Nutr. 2010;104:1353–6.

    Article  CAS  PubMed  Google Scholar 

  42. Costabile A, Klinder A, Fava F, et al. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br J Nutr. 2008;99:110–20.

    Google Scholar 

  43. Liu Z, Lin X, Huang G, et al. Prebiotic effects of almonds and almond skins on intestinal microbiota in healthy adult humans. Anaerobe. 2014;26:1–6. doi:10.1016/j.anaerobe.2013.11.007.

    Article  PubMed  Google Scholar 

  44. Costabile A, Deaville ER, Morales AM, Gibson GR. Prebiotic potential of a maize-based soluble fibre and impact of dose on the human gut microbiota. PLoS One. 2016;11(1):e0144457. doi:10.1371/journal.pone.0144457.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hooda S, Vester Boler BM, Rossoni Serao MC, et al. 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J Nutr. 2012;142:1259–65.

    Article  CAS  PubMed  Google Scholar 

  46. Salazar N, Dewulf EM, Neyrinck AM, et al. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin Nutr. 2015;34(3):501–7.

    Article  CAS  PubMed  Google Scholar 

  47. Holscher HD, Bauer LL, Gourineni V, et al. Agave inulin supplementation affects the fecal microbiota of healthy adults participating in a randomized, double-blind, placebo-controlled, crossover trial. J Nutr. 2015;145(9):2025–32.

    Article  CAS  PubMed  Google Scholar 

  48. Dewulf EM, Cani PD, Claus SP, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2013;62:1112–21.

    Article  CAS  PubMed  Google Scholar 

  49. Bouhnik Y, Achour L, Paineau D, et al. Four-week short chain fructo-oligosaccharides ingestion leads to increasing fecal bifidobacteria and cholesterol excretion in healthy elderly volunteers. Nutr J. 2007;6:42. doi:10.1186/1475-2891-6-42.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bouhnik Y, Raskine L, Simoneau G, et al. The capacity of short-chain fructo-oligosaccharides to stimulate faecal bifidobacteria: a dose-response relationship study in healthy humans. Nutr J. 2006;5:8. doi:10.1186/1475-2891-5-8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bouhnik Y, Vahedi K, Achour L, et al. Short-chain fructooligosaccharide administration dose-dependently increases fecal bifidobacteria in healthy humans. J Nutr. 1999;129:113–6.

    CAS  PubMed  Google Scholar 

  52. Karimi P, Farhangi MA, Sarmadi B, et al. The therapeutic potential of resistant starch in modulation of insulin resistance, endotoxemia, oxidative stress and antioxidant biomarkers in women with type 2 diabetes: a randomized controlled clinical trial. Ann Nutr Metab. 2016;68(2):85–93.

    Article  CAS  PubMed  Google Scholar 

  53. Aryana K, Greenway F, Dhurandhar N, et al. A resistant-starch enriched yogurt: fermentability, sensory characteristics, and a pilot study in children. Food Res. 2015;4:138. doi:10.12688/f1000research.6451.1.

    Article  Google Scholar 

  54. Haenen D, Jing Zhang J, da Silva CS, et al. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J Nutr. 2013;143:274–83.

    Article  CAS  PubMed  Google Scholar 

  55. Martínez I, Kim J, Duffy PR, et al. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One. 2010;5:e15046. doi:10.1371/journal.pone.0015046.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Costabile A, Fava F, Roytio H, et al. Impact of polydextrose on the faecal Colonic microbiota: a double-blind, crossover, placebo-controlled feeding study in healthy human subjects. Br J Nutr. 2012;108:471–81.

    Article  CAS  PubMed  Google Scholar 

  57. Sawicki CM, Livingston KA, Obin M, et al. Dietary fiber and the human gut microbiota: application of evidence mapping methodology. Nutrients. 2017;9:125. https://doi.org/10.3390/nu9020125.

    Article  PubMed Central  Google Scholar 

  58. McRorie JW, McKeown NM. Understanding the physics of functional fibers in the gastrointestinal tract: an evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. J Acad Nutr Diet. 2017;17:251–64.

    Article  Google Scholar 

  59. Wallace TC, Marzorati M, Spence L, et al. New frontiers in fibers: innovative and emerging research on the gut microbiome and bone health. J Am Coll Nutr. 2017;56(3):218–22. https://doi.org/10.1080/07315724.2016.1257961.

    Article  Google Scholar 

  60. Weaver CM. Diet, gut microbiome, and bone health. Curr Osteoporos Rep. 2015;13(20):125–30.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Abrams SA, Griffin IJ, Hawthorne KM, et al. A combination of prebiotic short- and long- chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr. 2005;471-476(2005):82.

    Google Scholar 

  62. Whisner CM, Martin BR, Schoterman MHC, et al. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind crossover trial. Br J Nutr. 2013;110:1292–303.

    Article  CAS  PubMed  Google Scholar 

  63. Whisner CM, Martin BR, Nakatsu CH, et al. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome. A randomized dose–response trial in free-living pubertal girls. J Nutr. 2016;146:1298–306.

    Article  CAS  PubMed  Google Scholar 

  64. Jakeman SA, Henry C, Martin B, et al. Soluble corn fiber increases bone calcium retention in postmenopausal women in a dose-dependent manner: a randomized crossover trial. Am J Clin Nutr. 2016;104:837–43.

    Article  CAS  PubMed  Google Scholar 

  65. Chen T, Long W, Zhang C, et al. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides dominated gut microbiota. Sci Rep. 2017;7:2594. https://doi.org/10.1038/s41598- 017-02995-4.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Weitkunat K, Schumann S, Nickel D, et al. Odd-chain fatty acids as a biomarker for dietary fiber intake: a novel pathway for endogenous production from propionate. Am J Clin Nutr. 2017;105:1544–51. https://doi.org/10.3945/ajcn.117.152702.

    CAS  PubMed  Google Scholar 

  67. Shankar V, Gouda M, Moncivaiz J, et al. Differences in gut metabolites and microbial composition and functions between Egyptian and U.S. children are consistent with their diets. mSystems. 2:e00169-16.

    Google Scholar 

  68. Vanegas SM Meydani M, Barnett JB, et al. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am J Clin Nutr. 2017;105:635–50.

    Article  PubMed  Google Scholar 

  69. Jenkins DJA, Kendall CWC, Vuksan V. The effect of wheat bran particle size on laxation and colonic fermentation. J Am Coll Nutr. 1999;18(4):339–45. https://doi.org/10.1080/07315724.1999.10718873.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dreher, M.L. (2018). Insights on the Role of Fiber in Colonic Microbiota Health. In: Dietary Fiber in Health and Disease. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-50557-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50557-2_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-50555-8

  • Online ISBN: 978-3-319-50557-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics