Skip to main content

Laccases: A Blue Enzyme for Greener Alternative Technologies in the Detection and Treatment of Emerging Pollutants

  • Chapter
  • First Online:
Green Technologies and Environmental Sustainability

Abstract

The continuous contamination of worldwide water bodies, by the presence of emerging pollutants, has raised great importance over the last decades. This group of pollutants comprises a large variety of chemicals, comprehending household and personal care products, human and veterinary drugs, as well as industrial compounds. Although, scientific data have made evident the potential threats of the emerging pollutants to public and environmental health, there is still limited information available concerning the ecotoxicity, concentration, and distribution of these compounds, which makes their ecological regulation, detection, and treatment very difficult. Thus, the search for green technologies to detect and treat potential environmental pollutants is critical for ecological and human health protection. In this context, laccases have gained scientific interest due to their broad substrate range, including recalcitrant environmental pollutants, and their ability to use only oxygen as a co-substrate. This work explores the potential of laccase enzyme as element of biosensing and bioremediation, and identifies the drawbacks that have to be overcome in order to demonstrate their feasibility and implement a large-scale process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah J, Ahmad M, Heng LY, Karuppiah N, Sidek H (2007) An optical biosensor based on immobilization of laccase and MBTH in stacked films for the detection of catechol. Sensors 7:2238–2250

    Article  Google Scholar 

  • Almansa E, Kandelbauer A, Pereira L, Cavaco-Paulo A, Guebitz GM (2004) Influence of structure on dye degradation with laccase mediator systems. Biocatal Biotransformation 22:315–324. doi:10.1080/10242420400024508

    Article  Google Scholar 

  • Arroyo M (1998) Inmovilización de enzimas. Fundamentos, métodos y aplicaciones. Ars Pharm 39:23–39

    Google Scholar 

  • Auriol M, Filali-Meknassi Y, Tyagi RD, Adams CD, Surampalli RY (2006) Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochem 41:525–539. doi:10.1016/j.procbio.2005.09.017

    Article  Google Scholar 

  • Auriol M, Filali-Meknassi Y, Tyagi RD, Adams CD (2007) Laccase-catalyzed conversion of natural and synthetic hormones from a municipal wastewater. Water Res 41:3281–3288. doi:10.1016/j.watres.2007.05.008

    Article  Google Scholar 

  • Auriol M, Filali-Meknassi Y, Adams CD, Tyagi RD, Noguerol T, Piña B (2008) Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater: efficiency of horseradish peroxidase and laccase from Trametes versicolor. Chemosphere 70:445–452. doi:10.1016/j.chemosphere.2007.06.064

    Article  Google Scholar 

  • Ba S, Arsenault A, Hassani T, Jones JP, Cabana H (2013) Laccase immobilization and insolubilization: from fundamentals to applications for the elimination of emerging contaminants in wastewater treatment. Crit Rev Biotechnol 33:404–418. doi:10.3109/07388551.2012.725390

    Article  Google Scholar 

  • Bailey MR, Woodard SL, Callawy E, Beifuss K, Magallanes-Lundback M, Lane J, Al E (2004) Improved recovery of active recombinant laccase from maize seed. Appl Microbiol Biotechnol 63:390–397

    Article  Google Scholar 

  • Bhattacharya SS, Garlapati VK, Banerjee R (2011) Optimization of laccase production using response surface methodology coupled with differential evolution. N Biotechnol 28:31–39

    Article  Google Scholar 

  • Bolong N, Ismail AF, Salim MR, Matsuura T (2009) A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239:229–246. doi:10.1016/j.desal.2008.03.020

    Article  Google Scholar 

  • Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31:1639–1650

    Article  Google Scholar 

  • Bryjak J, Kruczkiewicz P, Rekuć AP-CW (2007) Laccase immobilization on co- polymer of butyl acrylate and ethylene glycol dimethacrylate. Biochem Eng 35:325–332

    Article  Google Scholar 

  • Cabaj J, Sołoducho J, Chyla A, Jędrychowska A (2011) Hybrid phenol biosensor based on modified phenoloxidase electrode. Sens Actuators B 157:225–231. doi:10.1016/j.snb.2011.03.054

    Article  Google Scholar 

  • Cabana H, Jiwan JLH, Rozenberg R, Elisashvili V, Penninck M, Agathos SN, Jones JP (2007a) Elimination of the endocrine disruptors nonylphenol, bisphenol and triclosan by the oxidative action of the laccase of Coriolopsis polyzona. Chemosphere 67:770–778

    Article  Google Scholar 

  • Cabana H, Jones JP, Agathos SN (2007b) Elimination of endocrine disrupting chemicals using white rot fungi and their lignin modifying enzymes: a review. Eng Life Sci 7:429–456

    Article  Google Scholar 

  • Caliman FA, Gavrilescu M (2009) Pharmaceuticals, personal care products and endocrine disrupting agents in the environment—a review. Clean (Weinh) 37:277–303. doi:10.1002/clen.200900038

    Google Scholar 

  • Chaubey A, Malhotra BD (2002) Review: mediated biosensors. Biosens Bioelectron 7:441–456

    Article  Google Scholar 

  • Chawla S, Rawal R, Pundir CS (2011) Fabrication of polyphenol biosensor based on laccase immobilized on copper nanoparticles/chitosan/multiwalled carbon nanotubes/polyaniline-modified gold electrode. J Biotechnol 156:39–45. doi:10.1016/j.jbiotec.2011.08.008

    Article  Google Scholar 

  • Chawla S, Rawal R, Sharma S, Pundir CS (2012) An amperometric biosensor based on laccase immobilized onto nickel nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode for determination of phenolic content in fruit juices. Biochem Eng J 68:76–84. doi:10.1016/j.bej.2012.07.008

    Article  Google Scholar 

  • Chen X, Li D, Li G, Luo L, Ullah N, Wei Q, Huang F (2015) Facile fabrication of gold nanoparticle on zein ultrafine fibers and their application for catechol biosensor. Appl Surf Sci 328:444–452. doi:10.1016/j.apsusc.2014.12.070

    Article  Google Scholar 

  • Chen Y, Stemple B, Kumar M, Wei N (2016) Cell surface display fungal laccase as a renewable biocatalyst for degradation of persistent micropollutants bisphenol A and sulfamethoxazole. Environ Sci Technol. doi:10.1021/acs.est.6b01641

    Google Scholar 

  • Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150

    Article  Google Scholar 

  • Couto SR, Sanromán MÁ (2006) Effect of two wastes from groundnut processing on laccase production and dye decolourisation ability. J Food Eng 73:388–393

    Article  Google Scholar 

  • Das P, Barbora L, Das M, Goswami P (2014) Highly sensitive and stable laccase based amperometric biosensor developed on nano-composite matrix for detecting pyrocatechol in environmental samples. Sens Actuators B 192:737–744. doi:10.1016/j.snb.2013.11.021

    Article  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment : agents of subtle change ? Environ Health Perspect 107:907

    Article  Google Scholar 

  • Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214:442–448

    Article  Google Scholar 

  • Di Fusco M, Tortolini C, Deriu D, Mazzei F (2010) Laccase-based biosensor for the determination of polyphenol index in wine. Talanta 81:235–240. doi:10.1016/j.talanta.2009.11.063

    Article  Google Scholar 

  • Durán N, Rosa MA, D’Annibale A, Gianfreda L (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb Technol 31:907–931

    Article  Google Scholar 

  • Dzyadevych SV, Arkhypova VN, Soldatkin AP, El’skaya AV, Martelet C, Jaffrezic-Renault N (2008) Amperometric enzyme biosensors: past, present and future. ITBM-RBM 29:171–180. doi:10.1016/j.rbmret.2007.11.007

    Google Scholar 

  • Einsiedl F, Radke M, Maloszewski P (2010) Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants. J Contam Hydrol 117:26–36

    Article  Google Scholar 

  • Enaud E, Trovaslet M, Naveau F, Decristoforo A, Bizet S, Vanhulle S, Jolivalt C (2011) Laccase chloride inhibition reduction by an anthraquinonic substrate. Enzyme Microb Technol 49:517–525. doi:10.1016/j.enzmictec.2011.07.007

    Article  Google Scholar 

  • Esplugas S, Bila DM, Krause LG, Dezotti M (2007) Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater 149:631–642

    Article  Google Scholar 

  • Estevez MC, Belenguer J, Gomez-Montes S, Miralles J, Escuela AM, Montoya A, Lechuga LM (2012) Indirect competitive immunoassay for the detection of fungicide Thiabendazole in whole orange samples by Surface Plasmon Resonance. Analyst 137:5659–5665. doi:10.1039/c2an36094b

    Article  Google Scholar 

  • Fenice M, Federici F, Annibale AD (2003) Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olivemill wastewater-based media. J Biotechnol 100:77–85

    Article  Google Scholar 

  • Fernández-Fernández M, Sanromán MÁ, Moldes D (2013) Recent developments and applications of immobilized laccase. Biotechnol Adv 31:1808–1825. doi:10.1016/j.biotechadv.2012.02.013

    Article  Google Scholar 

  • Ferreira FDP, Silva LIB, Freitas AC, Rocha-Santos TAP, Duarte AC (2009) High performance liquid chromatography coupled to an optical fiber detector coated with laccase for screening catecholamines in plasma and urine. J Chromatogr A 1216:7049–7054

    Article  Google Scholar 

  • Fukuda T, Uchida H, Suzuki M, Miyamoto H, Morinaga H, Nawata H, Uwajima T (2004) Transformation products of bisphenol A by a recombinant Trametes villosa laccase and their estrogenic activity. J Chem Technol Biotechnol 79:1212–1218. doi:10.1002/jctb.1115

    Article  Google Scholar 

  • Gaitan IJ, Medina SC, González JC, Rodríguez A, Espejo AJ, Osma JF, Sarria V, Alméciga-Díaz CJ, Sánchez OF (2011) Evaluation of toxicity and degradation of a chlorophenol mixture by the laccase produced by Trametes pubescens. Bioresour Technol 102:3632–3635. doi:10.1016/j.biortech.2010.11.040

    Article  Google Scholar 

  • Gamella M, Campuzano S, Reviejo AJ, Pingarrón JM (2006) Electrochemical estimation of the polyphenol index in wines using a laccase biosensor. J Agric Food Chem 54:7960–7967

    Article  Google Scholar 

  • Garcia H, Hoffman C, Kinney K, Lawler D (2011) Laccase-catalyzed oxidation of oxybenzone in municipal wastewater primary effluent. Water Res 45:1921–1932

    Article  Google Scholar 

  • Garcia-Morales R, Rodríguez-Delgado M, Gomez-Mariscal K, Orona-Navar C, Hernandez-Luna C, Torres E, Parra R, Cárdenas-Chávez D, Mahlknecht J, Ornelas-Soto N (2015) Biotransformation of endocrine-disrupting compounds in groundwater : bisphenol A , nonylphenol, ethynylestradiol and triclosan by a laccase cocktail from Pycnoporus sanguineus CS43. Water Air Soil Pollut 226:1–14. doi:10.1007/s11270-015-2514-3

    Article  Google Scholar 

  • Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F (2014) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. N Biotechnol 32:147–156. doi:10.1016/j.nbt.2014.01.001

    Article  Google Scholar 

  • Ghindilis AL, Yaropolov VPGAI (1992) Lactase-based biosensor for determination of polyphenols : determination of catechols in tea. Biosens Bioelectron 7:127–131

    Article  Google Scholar 

  • Giroud F, Minteer SD (2013) Anthracene-modified pyrenes immobilized on carbon nanotubes for direct electroreduction of O2 by laccase. Electrochem Commun 34:157–160

    Article  Google Scholar 

  • Gupta G, Rajendran V, Atanassov P (2003) Laccase biosensor on monolayer-modified gold electrode. Electroanalysis 15:1577–1583. doi:10.1002/elan.200302724

    Article  Google Scholar 

  • Holmberg S, Rodriguez-Delgado M, Milton RD, Ornelas-Soto N, Minteer SD, Parra R, Madou MJ (2015) Bioelectrochemical study of thermostable Pycnoporus sanguineus CS43 laccase bioelectrodes based on pyrolytic carbon nanofibers for bioelectrocatalytic O2 reduction. ACS Catal 5:7507–7518. doi:10.1021/acscatal.5b01600

    Article  Google Scholar 

  • Horvat AJM, Babić S, Pavlović DM, Ašperger D, Pelko S, Kaštelan-Macan M, Petrović M, Mance AD (2012) Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. TrAC Trends Anal Chem 31:61–84

    Article  Google Scholar 

  • Ibarra-Escutia P, Gómez JJ, Calas-Blanchard C, Marty JL, Ramírez-Silva MT (2010) Amperometric biosensor based on a high resolution photopolymer deposited onto a screen-printed electrode for phenolic compounds monitoring in tea infusions. Talanta 81:1636–1642. doi:10.1016/j.talanta.2010.03.017

    Article  Google Scholar 

  • Jędrychowska A, Cabaj J, Świst A, Sołoducho J (2014) Electrochemical laccase sensor based on 3-methylthiophene/3-thiopheneacetic acid/bis(3,4-ethylenedioxythiophene)-N-nonylacridone as a new polymer support. J Electroanal Chem 720–721:64–70. doi:10.1016/j.jelechem.2014.03.017

    Article  Google Scholar 

  • Ji C, Hou J, Wang K, Zhang Y, Chen V (2016) Biocatalytic degradation of carbamazepine with immobilized laccase-mediator membrane hybrid reactor. J Membr Sci 502:11–20. doi:10.1016/j.memsci.2015.12.043

    Article  Google Scholar 

  • Jia J, Zhang S, Wang P, Wang H (2012) Degradation of high concentration 2,4-dichlorophenol by simultaneous photocatalytic-enzymatic process using TiO2/UV and laccase. J Hazard Mater 205-206:150–155. doi:10.1016/j.jhazmat.2011.12.052

    Article  Google Scholar 

  • Junghanns C, Moeder M, Krauss G, Martin C, Schlosser D (2005) Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology 151:45–57

    Article  Google Scholar 

  • Kim YJ, Nicell JA (2006) Impact of reaction conditions on the laccase-catalyzed conversion of bisphenol A. Bioresour Technol 97:1431–1442

    Article  Google Scholar 

  • Kochana J, Nowak P, Jarosz-Wilkołazka A, Bieroń M (2008) Tyrosinase/laccase bienzyme biosensor for amperometric determination of phenolic compounds. Microchem J 89:171–174. doi:10.1016/j.microc.2008.02.004

    Article  Google Scholar 

  • Kramer KJ, Kanost MR, Hopkins TL, Jiang H, Zhu YC, Xu R, Kerwin J, Turecek F (2001) Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron 57:385–392

    Article  Google Scholar 

  • Krastanov A (2000) Removal of phenols from mixtures by co-immobilized laccase/tyrosinase and Polyclar adsorption. J Ind Microbiol Biotechnol 24:383–388

    Article  Google Scholar 

  • Kushwah BS, Bhadauria S (2010) Development of biosensor for phenol detection using agarose—guar gum based laccases extracted from Pleurotus ostreatus. J Appl Polym Sci 115:1358–1365. doi:10.1002/app.31265

    Article  Google Scholar 

  • Kushwah BS, Upadhyaya SC, Shukla S, Sikarwar AS, Sengar RMS, Bhadauria S (2011) Performance of nanopolyaniline-fungal enzyme based biosensor for water pollution. Adv Mater Lett 2:43–51. doi:10.5185/amlett.2010.8149

    Article  Google Scholar 

  • Lante A, Crapisi A, Krastanov A, Spettoli P (2000) Biodegradation of phenols by laccase immobilised in a membrane reactor. Process Biochem 36:51–58

    Article  Google Scholar 

  • Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303

    Article  Google Scholar 

  • Le TT, Murugesan K, Lee C-S, Vu CH, Chang Y-S, Jeon J-R (2016) Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core-shell magnetic copper alginate beads. Bioresour Technol 216:203–210. doi:10.1016/j.biortech.2016.05.077

    Article  Google Scholar 

  • Liu Y, Qu X, Guo H, Chen H, Liu B, Dong S (2006) Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite. Biosens Bioelectron 21:2195–2201. doi:10.1016/j.bios.2005.11.014

    Article  Google Scholar 

  • Lloret L, Eibes G, Lú-Chau TA, Moreira MT, Feijoo G, Lema JM (2010) Laccase-catalyzed degradation of anti-inflammatories and estrogens. Biochem Eng J 51:124–131. doi:10.1016/j.bej.2010.06.005

    Article  Google Scholar 

  • Lloret L, Hollmann F, Eibes G, Feijoo G, Moreira MT, Lema JM (2012) Immobilisation of laccase on Eupergit supports and its application for the removal of endocrine disrupting chemicals in a packed-bed reactor. Biodegradation 23:373–386

    Article  Google Scholar 

  • Lloret L, Eibes G, Moreira MT, Feijoo G, Lema JM (2013) On the use of a high-redox potential laccase as an alternative for the transformation of non-steroidal anti-inflammatory drugs (NSAIDs). J Mol Catal B: Enzym 97:233–242. doi:10.1016/j.molcatb.2013.08.021

    Article  Google Scholar 

  • Madhavi V, Lele SS (2009) Laccase: properties and applications. Bioresources 4:1694–1717

    Google Scholar 

  • Majeau JA, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101:2331–2350. doi:10.1016/j.biortech.2009.10.087

    Article  Google Scholar 

  • Marco M-P, Barceló D (1996) Environmental applications of analytical biosensors. Meas Sci Technol 7:1547–1562

    Article  Google Scholar 

  • Margot J, Bennati-Granier C, Maillard J, Blánquez P, Barry DA, Holliger C (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3:63. doi:10.1186/2191-0855-3-63

    Article  Google Scholar 

  • Margot J, Copin PJ, Von Gunten U, Barry DA, Holliger C (2015) Sulfamethoxazole and isoproturon degradation and detoxification by a laccase-mediator system: influence of treatment conditions and mechanistic aspects. Biochem Eng J 103:47–59. doi:10.1016/j.bej.2015.06.008

    Article  Google Scholar 

  • Mei LP, Feng JJ, Wu L, Zhou JY, Chen JR, Wang A-J (2015) Novel phenol biosensor based on laccase immobilized on reduced graphene oxide supported palladium-copper alloyed nanocages. Biosens Bioelectron 74:347–352. doi:10.1016/j.bios.2015.06.060

    Article  Google Scholar 

  • Meisenheimer M, Mcdowell D, Sacher F (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36:3855–3863

    Article  Google Scholar 

  • Meredith MT, Minteer SD (2012) Biofuel cells: enhanced enzymatic bioelectrocatalysis. Annu Rev Anal Chem 5:157–179. doi:10.1146/annurev-anchem-062011-143049

    Article  Google Scholar 

  • Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35:803–814. doi:10.1016/j.envint.2008.10.008

    Article  Google Scholar 

  • Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI (2007a) “Blue” laccases. Biochem 72:1136–1150

    Google Scholar 

  • Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI (2007b) Laccase-mediator systems and their applications: a review. Appl Biochem Microbiol 43:523–535

    Article  Google Scholar 

  • Munteanu FD, Lindgren A, Emneus J, Gorton L, Ruzgas T, Csoregi E, Ciucu A, Van Huystee RB, Gazaryan IG, Mark L (1998) Bioelectrochemical monitoring of phenols and aromatic amines in flow injection using novel plant peroxidases. Anal Chem 70:2596–2600

    Article  Google Scholar 

  • Murray A, Ormeci B (2012) Application of molecularly imprinted and non-imprinted polymers for removal of emerging contaminants in water and wastewater treatment: a review. Environ Sci Pollut Res Int 19:3820–3830. doi:10.1007/s11356-012-1119-2

    Article  Google Scholar 

  • Nguyen LN, Hai FI, Yang S, Kang J, Leusch FDL, Roddick F, Price WE, Nghiem LD (2013) Removal of trace organic contaminants by an MBR comprising a mixed culture of bacteria and white-rot fungi. Bioresour Technol 148:234–241

    Article  Google Scholar 

  • Nguyen LN, Hai FI, Price WE, Leusch FDL, Roddick F, McAdam EJ, Magram SF, Nghiem LD (2014) Continuous biotransformation of bisphenol A and diclofenac by laccase in an enzymatic membrane reactor. Int Biodeter Biodegr 95:25–32. doi:10.1016/j.ibiod.2014.05.017

    Article  Google Scholar 

  • Nicolini C, Bruzzese D, Cambria MT, Bragazzi NL, Pechkova E (2013) Recombinant laccase: I. Enzyme cloning and characterization. J Cell Biochem 114:599–605. doi:10.1002/jcb.24397

    Article  Google Scholar 

  • Omura T (1961) Studies on laccases of lacquer trees-comparison of laccases obtained from Rhus vernicifera and Rhus succedanea. J Biochem 50:264–272

    Article  Google Scholar 

  • Osma JF, Toca Herrera JL, Rodríguez Couto S (2007) Banana skin: a novel waste for laccase production by Trametes pubescens under solid-state conditions. Application to synthetic dye decolouration. Dye Pigment 75:32–37. doi:10.1016/j.dyepig.2006.05.021

    Article  Google Scholar 

  • Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2011) Cost analysis in laccase production. J Environ Manage 92:2907–2912. doi:10.1016/j.jenvman.2011.06.052

    Article  Google Scholar 

  • Petrovic M (2003) Analysis and removal of emerging contaminants in wastewater and drinking water. TrAC Trends Anal Chem 22:685–696. doi:10.1016/S0165-9936(03)01105-1

    Article  Google Scholar 

  • Piontek K, Antorini M, Choinowski T (2002) Crystal Structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J Biol Cehm 227:37663–37669

    Article  Google Scholar 

  • Portaccio M, Di Martino S, Maiuri P, Durante D, De Luca P, Lepore M, Bencivenga U, Rossi S, De Maio A, Mita DG (2006) Biosensors for phenolic compounds: the catechol as a substrate model. J Mol Catal B: Enzym 41:97–102. doi:10.1016/j.molcatb.2006.05.002

    Article  Google Scholar 

  • Qin RB, Zhu XF, Wu K, Zhang JJ, Zhao HK (2012) Condition optimization for degradation of chlorophenols using laccase from Amillariella mellea. Huan Jing Ke Xue 33:2470–2474

    Google Scholar 

  • Quan D, Shin W (2004) Amperometric detection of catechol and catecholamines by immobilized laccase from DeniLite. Electroanalysis 16:1576–1582

    Article  Google Scholar 

  • Ramírez-Cavazos LI, Junghanns C, Ornelas-Soto N, Cárdenas-Chávez D, Hernández-Luna C, Demarche P, Enaud E, García-Morales R, Agathos SN, Parra-Saldivar R (2014a) Purification and characterization of two thermostable laccases from Pycnoporus sanguineus and potential role in degradation of endocrine disrupting chemicals. J Mol Catal B: Enzym 104:32–42

    Article  Google Scholar 

  • Ramírez-Cavazos LI, Junghanns C, Nair R, Cárdenas-Chávez D, Hernández-Luna C, Agathos S, Parra R (2014b) Enhanced production of thermostable laccases from a native strain of Pycnoporus sanguineus using central composite design. J Zhejiang Univ Sci B 15:343–352

    Article  Google Scholar 

  • Rezg R, El-Fazaa S, Gharbi N, Mornagui B (2013) Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives. Environ Int 64C:83–90

    Google Scholar 

  • Rochefort D, Kouisni LGK (2008) Physical immobilization of laccase on an electrode by means of poly(ethyleneimine) microcapsules. J Electroanal Chem 617:53–63

    Article  Google Scholar 

  • Rodríguez Couto S, Toca Herrera JL (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513. doi:10.1016/j.biotechadv.2006.04.003

    Article  Google Scholar 

  • Rodríguez Couto S, López E, Sanromán MÁ (2006) Utilisation of grape seeds for laccase production in solid-state fermentors. J Food Eng 74:263–267

    Article  Google Scholar 

  • Rodríguez-Delgado MM, Alemán-Nava GS, Rodríguez-Delgado JM, Dieck-Assad G, Martínez-Chapa SO, Barceló D, Parra R (2015) Laccase-based biosensors for detection of phenolic compounds. TrAC Trends Anal Chem 74:21–45. doi:10.1016/j.trac.2015.05.008

    Article  Google Scholar 

  • Rodríguez-Delgado M, Orona-Navar C, García-Morales R, Hernandez-Luna C, Parra R, Mahlknecht J, Ornelas-Soto N (2016) Biotransformation kinetics of pharmaceutical and industrial micropollutants in groundwaters by a laccase cocktail from Pycnoporus sanguineus CS43 fungi. Int Biodeter Biodegr 108:34–41. doi:10.1016/j.ibiod.2015.12.003

    Article  Google Scholar 

  • Rodriguez-Mozaz S, Marco MP, Lopez de Alda MJ, Barceló D (2004) Biosensors for environmental monitoring of endocrine disruptors: a review article. Anal Bioanal Chem 378:588–598

    Article  Google Scholar 

  • Rodriguez-Mozaz S, Lopez de Alda MJ, Barceló D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386:1025–1041. doi:10.1007/s00216-006-0574-3

    Article  Google Scholar 

  • Rogers KR (2006) Recent advances in biosensor techniques for environmental monitoring. Anal Chim Acta 568:222–231. doi:10.1016/j.aca.2005.12.067

    Article  Google Scholar 

  • Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763. doi:10.1039/b714449k

    Article  Google Scholar 

  • Sanz J, de Marcos S, Galbán J (2012) Autoindicating optical properties of laccase as the base of an optical biosensor film for phenol determination. Anal Bioanal Chem 404:351–359. doi:10.1007/s00216-012-6061-0

    Article  Google Scholar 

  • Sein M, Zeda M, Tuerk J, Golloch A, Von Sonntag C (2008) Oxidation of diclofenac with ozone in aqueous solution. Environ Sci Technol 42:6656–6662

    Article  Google Scholar 

  • Senthivelan T, Kanagaraj J, Panda RC (2016) Recent trends in fungal laccase for various industrial applications: an eco-friendly approach—a review. Biotechnol Bioprocess Eng 21:19–38. doi:10.1007/s12257-015-0278-7

    Article  Google Scholar 

  • Setti L, Giuliani S, Spinozzi G, Pifferi PG (1999) Laccase catalyzed-oxidative of 3-methyl 2-benzothiazolinone hydrazone and methoxyphenols. Enzyme Microb Technol 25:285–289

    Article  Google Scholar 

  • Singh M, Verma N, Garg AK, Redhu N (2008) Urea biosensors. Sens Actuators B Chem 134:345–351

    Article  Google Scholar 

  • Singh Arora D, Kumar Sharma R (2010) Ligninolytic fungal laccases and their biotechnological applications. Appl Biochem Biotechnol 160:1760–1788. doi:10.1007/s12010-009-8676-y

    Article  Google Scholar 

  • Snyder SA, Westerhoff P, Yoon Y, Sedlak DL (2003) Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ Eng Sci 20:449–469

    Article  Google Scholar 

  • Songulashvili G, Elisashvili V, Wasser SP, Nevo E, Hadar Y (2007) Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes. Enzyme Microb Technol 41:57–61. doi:10.1016/j.enzmictec.2006.11.024

    Article  Google Scholar 

  • Surwase SV, Patil SA, Srinivas S, Jadhav JP (2016) Enzyme and microbial technology interaction of small molecules with fungal laccase : a Surface Plasmon Resonance based study. Enzyme Microb Technol 82:110–114

    Article  Google Scholar 

  • Tang H, Zhang W, Geng P, Wang Q, Jin L, Wu Z, Lou M (2006) A new amperometric method for rapid detection of Escherichia coli density using a self-assembled monolayer-based bienzyme biosensor. Anal Chim Acta 562:190–196. doi:10.1016/j.aca.2006.01.061

    Article  Google Scholar 

  • Tang L, Zeng G, Liu J, Xu X, Zhang Y, Shen G, Li Y, Liu C (2008) Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks. Anal Bioanal Chem 391:679–685. doi:10.1007/s00216-008-2049-1

    Article  Google Scholar 

  • Teijon G, Candela L, Tamoh K, Molina-Díaz A, Fernández-Alba AR (2010) Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Sci Total Environ 408:3584–3595. doi:10.1016/j.scitotenv.2010.04.041

    Article  Google Scholar 

  • Theerachat M, Emond S, Cambon E, Bordes F, Marty A, Nicaud J-M, Chulalaksananukul W, Guieysse D, Remaud-Siméon M, Morel S (2012) Engineering and production of laccase from Trametes versicolor in the yeast Yarrowia lipolytica. Bioresour Technol 125:267–274. doi:10.1016/j.biortech.2012.07.117

    Article  Google Scholar 

  • Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Technical report. Electrochemical biosensors : recommended definitions and classification. Biosens Bioelectron 16:121–131

    Article  Google Scholar 

  • Timur S, Pazarlıoǧlu N, Pilloton R, Telefoncu A (2004) Thick film sensors based on laccases from different sources immobilized in polyaniline matrix. Sens Actuators B 97:132–136

    Article  Google Scholar 

  • Torrecilla J, Mena ML, Yáñez-Sedeño P, García J (2007) Quantification of phenolic compounds in olive oil mill wastewater by artificial neural network/laccase biosensor. J Agric Food Chem 55:7418–7426

    Article  Google Scholar 

  • Vianello F, Cambria A, Ragusa S, Cambria MT, Zennaro L, Rigo A (2004) A high sensitivity amperometric biosensor using a monomolecular layer of laccase as biorecognition element. Biosens Bioelectron 20:315–321. doi:10.1016/j.bios.2004.01.022

    Article  Google Scholar 

  • Xu X, Guo M, Lu P, Wang R (2010) Development of amperometric laccase biosensor through immobilizing enzyme in copper-containing ordered mesoporous carbon (Cu-OMC)/chitosan matrix. Mater Sci Eng C 30:722–729. doi:10.1016/j.msec.2010.03.006

    Article  Google Scholar 

  • Xu R, Zhou Q, Li F, Zhang B (2013) Laccase immobilization on chitosan/poly(vinyl alcohol) composite nanofibrous membranes for 2,4-dichlorophenol removal. Chem Eng J 222:321–329. doi:10.1016/j.cej.2013.02.074

    Article  Google Scholar 

  • Yang SS, Liu ZW, Yi XP, Zhang AL, Zhang TY, Luo JX, Zhang ZH, Shen JC, Yin HX, Chen LP (2012) Isolation of laccase gene from Bacillus subtilis and analysis of its physicochemical properties. Gene 491:49–52

    Article  Google Scholar 

  • Yang S, Hai FI, Nghiem LD, Roddick F, Price WE (2013) Removal of trace organic contaminants by nitrifying activated sludge and whole-cell and crude enzyme extract of Trametes versicolor. Water Sci Technol 67:1216–1223. doi:10.2166/wst.2013.684

    Article  Google Scholar 

  • Yaropolov AI, Kharybin AN, Emnéus J, Marko-Varga, G and Gorton, L (1995) Flow-injection analysis of phenols at a graphite electrode modified with co-immobilised laccase and tyrosinase. Anal Chim Acta 308:137–144

    Google Scholar 

  • Yaropolov AI, Skorobogat’ko OV, Vartanov SS, Varfolomeyev SD (1994) Laccase. Appl Biochem Biotechnol 49:257–280

    Article  Google Scholar 

  • Yaropolov AI, Shleev S, Morozova O, Zaitseva E, Marko-Varga G, Emneus J, Gorton L (2005) An amperometric biosensor based on laccase immobilized in polymer matrices for determining phenolic compounds. J Anal Chem 60:553–557

    Google Scholar 

  • Zhang J, Liu X, Xu Z, Chen H, Yang Y (2008) Degradation of chlorophenols catalyzed by laccase. Int Biodeter Biodegr 61:351–356. doi:10.1016/j.ibiod.2007.06.015

    Article  Google Scholar 

  • Zilly A, da Silva Coelho-Moreira J, Bracht A, Marques de Souza CG, Carvajal AE, Koehnlein EA, Peralta RM (2011) Influence of NaCl and Na2SO4 on the kinetics and dye decolorization ability of crude laccase from Ganoderma lucidum. Int Biodeter Biodegr 65:340–344

    Article  Google Scholar 

  • Zoppellaro G, Sakurai T, Huang HW (2001) A novel mixed valence form of Rhus vernicifera laccase and its reaction with dioxygen to give a peroxide intermediate bound to the trinuclear center. J Biochem 129:949–953

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa Rodríguez-Delgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rodríguez-Delgado, M., Ornelas-Soto, N. (2017). Laccases: A Blue Enzyme for Greener Alternative Technologies in the Detection and Treatment of Emerging Pollutants. In: Singh, R., Kumar, S. (eds) Green Technologies and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-50654-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50654-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50653-1

  • Online ISBN: 978-3-319-50654-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics