Skip to main content

Solar Photovoltaics (PV): A Sustainable Solution to Solve Energy Crisis

  • Chapter
  • First Online:
Green Technologies and Environmental Sustainability

Abstract

Although sun is the source of all forms of energy including the energy contained in fossil fuels, the term “solar energy” is meant the energy obtained directly from sun’s radiation. Solar photovoltaic (PV) is the most promising of all the active solar energy technologies. This technology is affordable and the source of this energy is inexhaustible. Moreover, it is the cleanest source of energy developed so far, thereby establishing it as a sustainable solution to solve energy crisis. This chapter presents a succinct picture of the solar PV technology along with classification and application areas. The status of the technology maturity and energy–exergy and economic aspects of PV technology has also been addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaditya G, Pillai R, Mani M (2013) An insight into real-time performance assessment of a building integrated photovoltaic (BIPV) installation in Bangalore (India). Energy Sustain Dev 17(5):431–437

    Article  Google Scholar 

  • Akikur RK, Saidur R, Ping HW et al (2013) Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: a review. Renew Sust Energ Rev 27:738–752

    Article  Google Scholar 

  • Al-Karaghouli A, Renne D, Kazmerski LL (2010) Technical and economic assessment of photovoltaic-driven desalination systems. Renew Energy 35(2):323–328

    Article  Google Scholar 

  • Avlonitis S, Kouroumbas K, Vlachakis N (2003) Energy consumption and membrane replacement cost for seawater RO desalination plants. Desalination 157(1):151–158

    Article  Google Scholar 

  • Browne MC, Lawlor K, Kelly A et al (2015) Indoor characterisation of a photovoltaic/thermal phase change material system. Energy Procedia 70:163–171

    Article  Google Scholar 

  • CT (2013) Solar PV costs will fall by half By 2020, But Prices Won’t. CleanTechnica. http://cleantechnica.com/2013/

  • Dahlan NY, Jusoh MA, Abdullah WNAW (2014) Solar grid parity for Malaysia: analysis using experience curves. In: IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014), Langkawi, The Jewel of Kedah, Malaysia, 24–25 March 2014, pp 461–466

    Google Scholar 

  • Denholm P, Kuss M, Margolis RM (2013) Co-benefits of large scale plug-in hybrid electric vehicle and solar PV deployment. J Power Sources 236:350–356

    Article  Google Scholar 

  • Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sust Energ Rev 4(2):157–175

    Article  Google Scholar 

  • Du D, Darkwa J, Kokogiannakis G (2013) Thermal management systems for Photovoltaics (PV) installations: a critical review. Sol Energy 97:238–254

    Article  Google Scholar 

  • EPIA (2011) Solar generation. European Photovoltaic Industry Association and Greenpeace. www.epia.org, p 6

  • Esram T, Chapman PL (2007) Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energy Convers 22(2):439

    Article  Google Scholar 

  • Feldman D, Barbose G, Margolis R, et al. (2012) Photovoltaic (PV) pricing trends: historical, recent, and near-term projections. SunShot, U.S. Department of Energy. http://www.osti.gov/bridge.

  • Gallagher B (2016) U.S. Solar PV Price Brief H1 2016: system pricing, breakdowns and forecasts. http://www.greentechmedia.com/research/report/us-solar-pv-price-brief-h1-2016

  • Green D (2012) Advantages and disadvantages of solar photovoltaic—quick pros and cons of solar PV. http://www.renewableenergyworld.com/. Accessed 22 July 2016

  • Green MA, Hishikawa Y, Warta W et al (2016) Solar cell efficiency tables (version 48). Prog Photovolt Res Appl 24:905–913. doi:10.1002/pip.2788

    Article  Google Scholar 

  • Jaffe P, McSpadden J (2013) Energy conversion and transmission modules for space solar power. Proc IEEE 101(6):1424–1437

    Article  Google Scholar 

  • Jaffe P, Hodkin J, Harrington F (2012) Development of a sandwich module prototype for space solar power. Paper presented at the Aerospace Conference, 2012 IEEE

    Google Scholar 

  • Joshi AS, Dincer I, Reddy BV (2009) Thermodynamic assessment of photovoltaic systems. Sol Energy 83(8):1139–1149

    Article  Google Scholar 

  • Looser R, Vivar M, Everett V (2014) Spectral characterisation and long-term performance analysis of various commercial Heat Transfer Fluids (HTF) as Direct-Absorption Filters for CPV-T beam-splitting applications. Appl Energy 113:1496–1511

    Article  Google Scholar 

  • Lund H (2007) Renewable energy strategies for sustainable development. Energy 32(6):912–919

    Article  Google Scholar 

  • Mankins JC (1997) A fresh look at space solar power: New architectures, concepts and technologies. Acta Astronaut 41(4):347–359

    Article  Google Scholar 

  • Markvart T, Castafier L (2003) A Practical Handbook of Photovoltaics: Fundamentals and Applications. Elsevier, London, UK

    Google Scholar 

  • Munsell M (2016a) Solar module prices reached 57 cents per watt in 2015, will continue to fall through 2020. http://www.greentechmedia.com/articles/read/solar-pv-module-price-reach-57-cents-per-watt-in-2015-continue-to-fall-thro. Accessed 10 Mar 2016

  • Munsell M (2016b) Solar PV prices will fall below $1.00 per watt by 2020. http://www.greentechmedia.com/articles/read/solar-pv-prices-to-fall-below-1.00-per-watt-by-2020. Accessed 1 June 2016

  • NCSC (2002) Photovoltaic applications. In: N. C. S. Center (ed). State Energy Office, NC Department of Administration, Raleigh, NC

    Google Scholar 

  • NREL (2014) Distrubuted solar photovolatics for electrical vehicle charging. In: N. R. E. Laboratory (ed). Office of Energy Efficiency and Renewable Energy, Denver

    Google Scholar 

  • Omer AM (2008) Energy, environment and sustainable development. Renew Sust Energ Rev 12(9):2265–2300

    Article  MathSciNet  Google Scholar 

  • Pandey AK, Pant PC, Sastry OS et al (2015) Energy and exergy performance evaluation of a typical solar photovoltaic module. Therm Sci 19(2):S625–S636

    Article  Google Scholar 

  • Pandey A, Tyagi V, Jeyraj AS et al (2016) Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renew Sust Energ Rev 53:859–884

    Article  Google Scholar 

  • Peng C, Huang Y, Wu Z (2011) Building-integrated photovoltaics (BIPV) in architectural design in China. Energ Buildings 43(12):3592–3598

    Article  Google Scholar 

  • Philibert C (2011) Solar energy perspective. International Energy Agency(IEA), France

    Google Scholar 

  • Roger M, Yogi G, Hari MU (2009) Photovoltaics Fundamentals, Technology and Application Handbook of Energy Efficiency and Renewable Energy, 2nd edn. Taylor & Francis, Philadelphia, PA

    Google Scholar 

  • SHLSC (2014) Solar panel prices, solar panel Malaysia, Singapore, Thailand, Chile, Colombia, Mexico, South Africa, Canada. Shandong Hilight-Solar. ALIbaba.com

    Google Scholar 

  • SP (2014a) Blue carbon poly pv sunpower solar panel 300 W. Alibaba.com

    Google Scholar 

  • SP (2014b) Hot sale sunpower 300 W poly pv flexible solar panel manufacturer with TUV CE IEC certificate from China in low price. Alibaba.com

    Google Scholar 

  • SP (2014c) Import sunpower mono solar panel 200w 250w 300w. Alibaba.com

    Google Scholar 

  • Susanto H (2011) Towards practical implementations of membrane distillation. Chem Eng Process Process Intensif 50(2):139–150

    Article  Google Scholar 

  • Teresa DM, Busch J (2010) Design of small photovoltaic (PV) solar-powered water pump systems. In: McDuff E (ed). United Sates Department of Agriculture (USDA), Portland, OR

    Google Scholar 

Download references

Acknowledgement 

The authors (A. K. Pandey, N.A. Rahim and M. Hasanuzzaman) would like to acknowledge the financial support from the University Malaya Research Grant (UMRG) scheme (Project No: RP016B-15SUS) to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pandey, A.K., Rahim, N.A., Hasanuzzaman, M., Pant, P.C., Tyagi, V.V. (2017). Solar Photovoltaics (PV): A Sustainable Solution to Solve Energy Crisis. In: Singh, R., Kumar, S. (eds) Green Technologies and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-50654-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50654-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50653-1

  • Online ISBN: 978-3-319-50654-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics