Skip to main content

Collective Dynamics of Particles in Viscous Flows with an Emphasis on Slender Rods

  • Chapter
  • First Online:
Collective Dynamics of Particles

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 576))

  • 1030 Accesses

Abstract

Basic principles that govern the viscous motion of non-colloidal particles are described, and then the principles are applied to the analysis and simulation of the collective motion of particles in a concentrated suspension. Though rigid spheres are discussed in general, the dynamics of rigid rods are the focus of the given examples, equations, and simulation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A thorough and readable introduction to these concepts is available in the text by Guazzelli and Morris (2012). Also, the text by Kim and Karrila (2005) is a useful handbook containing multiple relationships for performing calculations on these types of suspensions.

References

  • S.J. Aarseth. Gravitational N-Body Simulations. Cambridge University Press, 2003.

    Google Scholar 

  • S.A. Altobelli, R.C. Givler, and E. Fukushima. Velocity and concentration measurements of suspensions by nuclear magnetic resonance imaging. J. Rheol., 35: 721–734, 1991.

    Article  Google Scholar 

  • P.A. Arp and S.G. Mason. The kinetics of flowing dispersions. VIII. Doublets of rigid spheres (theoretical). J. Colloid Interface Sci., 61: 21–43, 1977.

    Article  Google Scholar 

  • G.K. Batchelor. Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech., 44: 419–440, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  • R.B. Bird, H.R. Warner Jr., and D. C. Evans. Kinetic theory and rheology of dumbbell suspensions with Brownian motion. Adv. Poly. Sci., 8: 1–90, 1971.

    Article  Google Scholar 

  • I. Bitsanis, H.T. Davis, and M. Tirrell. Brownian dynamics of nondilute solutions of rodlike polymers. 1. Low concentrations. Macromolecules, 21: 2824–2835, 1988.

    Article  Google Scholar 

  • I. Bitsanis, H.T. Davis, and M. Tirrell. Brownian dynamics of nondilute solutions of rodlike polymers. 2. High concentrations. Macromolecules, 23, 1990.

    Google Scholar 

  • J.R. Blake. A note on the image system for a Stokeslet in a no-slip boundary. Proc. Cambridge Philos. Soc., 70: 303, 1971.

    Article  MATH  Google Scholar 

  • J.F. Brady and G. Bossis. Stokesian dynamics. Ann. Rev. Fluid Mech., 20: 111–157, 1988.

    Article  Google Scholar 

  • J.F. Brady, R.J. Phillips, J.C. Lester, and G. Bossis. Dynamic simulation of hydrodynamically interacting suspensions. J. Fluid Mech., 195: 257–280, 1988.

    Article  MATH  Google Scholar 

  • J.E. Butler. Suspension dynamics: moving beyond steady. J. Fluid Mech., 752: 1–4, 2014.

    Article  Google Scholar 

  • J.E. Butler and R.T. Bonnecaze. Imaging of particle shear migration with electrical impedance tomography. Phys. Fluids, 11: 1982–1994, 1991.

    Article  MATH  Google Scholar 

  • J.E. Butler and E.S.G. Shaqfeh. Dynamic simulations of the inhomogeneous sedimentation of rigid fibres. J. Fluid Mech., 468: 205–237, 2002.

    Article  MATH  Google Scholar 

  • T. Chwang and T.Y. Wu. Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech., 67: 787–815, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  • I.L. Claeys and J.F. Brady. Lubrication singularities of the grand resistance tensor for two arbitrary particles. Physico Chem. Hydrodyn., 11: 261–293, 1989.

    Google Scholar 

  • I.L. Claeys and J.F. Brady. Suspensions of prolate spheroids in Stokes flow. Part 1. Dynamics of a finite number of particles in an unbounded fluid. J. Fluid Mech., 251: 411–442, 1993.

    Article  MATH  Google Scholar 

  • R.G. Cox. The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech., 44: 791–810, 1970.

    Article  MATH  Google Scholar 

  • L. Durlofsky, J.F. Brady, and G. Bossis. Dynamic simulation of hydrodynamically interacting particles. J. Fluid Mech., 180: 21–49, 1987.

    Article  MATH  Google Scholar 

  • A. Franceschini, E. Filippidi, E. Guazzelli, and D. J. Pine. Transverse alignment of fibers in a periodically sheared suspension: An absorbing phase transition with a slowly varying control parameter. Phys. Rev. Lett., 107: 250603, 2011.

    Article  Google Scholar 

  • E. Guazzelli and J.F. Morris. A Physical Introduction to Suspension Dynamics. Cambridge University Press, 2012.

    Google Scholar 

  • R.E. Hampton, A.A. Mammoli, A.L. Graham, N. Tetlow, and S.A. Altobelli. Migration of particles undergoing pressure-driven flow in a circular conduit. J. Rheol., 41: 621–640, 1997.

    Article  Google Scholar 

  • O.G. Harlen, R.R. Sundararajakumar, and D.L. Koch. Numerical simulation of a sphere settling through a suspension of neutrally buoyant fibres. J. Fluid Mech., 388: 355–388, 1999.

    Article  MATH  Google Scholar 

  • H. Hasimoto. On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech., 5: 317–328, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  • R. Hsu and P. Ganatos. Gravitational and zero-drag motion of a spheroid adjacent to an inclined plane at low Reynolds number. J. Fluid Mech., 268: 267, 1976.

    Article  Google Scholar 

  • W. Hunziker and I.M. Sigal. The quantum N-body problem. J. Math. Phys., 41, 2000.

    Google Scholar 

  • I.M. Janosi, T. Tel, D.E. Wolf, and J.A.C. Gallas. Chaotic particle dynamics in viscous flows: The three-particle Stokeslet problem. Phys. Rev. E, 65: 2858–2868, 1997.

    Article  Google Scholar 

  • G.B. Jeffery. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Roy. Soc. A, 102: 161–179, 1922.

    Article  MATH  Google Scholar 

  • J. Jeffrey and Y. Onishi. Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech., 139: 261–290, 1984.

    Article  MATH  Google Scholar 

  • A. Karnis, H. Goldsmith, and S. Mason. The kinetics of flowing dispersions: I. Concentrated suspensions of rigid particles. J. Colloid Interface Sci., 22: 531–553, 1966.

    Article  Google Scholar 

  • S. Kim and S.J. Karrila. Microhydrodynamics: Principles and Selected Applications. Butterworth-Heineman, 2005.

    Google Scholar 

  • S. Kim and R.T. Mifflin. The resistance and mobility functions of two equal spheres in low-Reynolds-number flow. Phys. Fluids, 28: 2033–2045, 1985.

    Article  MATH  Google Scholar 

  • D.L. Koch and E.S.G. Shaqfeh. The instability of a dispersion of sedimenting spheroids. J. Fluid Mech., 209: 521–542, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  • D. Leighton and A. Acrivos. The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech., 181: 415–439, 1987.

    Article  Google Scholar 

  • M.B. Mackaplow and E.S.G. Shaqfeh. A numerical study of the sedimentation of fiber suspensions. J. Fluid Mech., 376: 149–182, 1998.

    Article  MATH  Google Scholar 

  • B. Metzger and J. E. Butler. Irreversibility and chaos: Role of long range hydrodynamic interactions in sheared suspensions. Phys. Rev. E, 82: 051406, 2010.

    Article  Google Scholar 

  • B. Metzger, M. Nicolas, and E. Guazzelli. Falling clouds of particles in viscous fluids. J. Fluid Mech., 580: 283–301, 2007.

    Article  MATH  Google Scholar 

  • B. Metzger, P. Pham, and J.E. Butler. Irreversibility and chaos: Role of lubrication interactions in sheared suspensions. Phys. Rev. E, 87: 052304, 2013.

    Article  Google Scholar 

  • P.R. Nott and J.F. Brady. Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech., 275: 157–199, 1994.

    Article  MATH  Google Scholar 

  • A. Oberbeck. Ueber stationiire Fliissigkeitsbewegungen mit Beriicksichtigung der inneren Reibung. J. reine angew. Math., 81: 62–80, 1876.

    MathSciNet  Google Scholar 

  • J. Park and J.E. Butler. Inhomogeneous distribution of a rigid fibre undergoing rectilinear flow between parallel walls at high Peclet numbers. J. Fluid Mech., 630: 267–298, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Park, J.M. Bricker, and J.E. Butler. Cross-stream migration in dilute solutions of rigid polymers undergoing rectilinear flow near a wall. Phys. Rev. E, 76: 040801(R), 2007.

    Article  Google Scholar 

  • J. Park, B. Metzger, E. Guazzelli, and J.E. Butler. A cloud of rigid fibres sedimenting in a viscous fluid. J. Fluid Mech., 648: 351–362, 2010.

    Article  MATH  Google Scholar 

  • P. Pham, B. Metzger, and J.E. Butler. Particle dispersion in sheared suspensions: Crucial role of solid-solid contacts. Phys. Fluids, 27: 051701, 2015.

    Article  Google Scholar 

  • P. Pham, B. Metzger, and J.E. Butler. Origin of critical strain amplitude in periodically sheared suspensions. Physical Review Fluids, 1: 022201(R), 2016.

    Article  Google Scholar 

  • D.J. Pine, J.P. Gollub, J.F. Brady, and A.M. Leshansky. Chaos and threshold for irreversibility in sheared suspensions. Nature, 438: 997, 2005.

    Article  Google Scholar 

  • C. Pozrikidis. Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press, 1992.

    Google Scholar 

  • J. Riseman and J. G. Kirkwood. The intrinsic viscosity, translational and rotatory diffusion constants of rod-like macromolecules in solution. J. Chem. Phys., 18: 512–516, 1950.

    Article  Google Scholar 

  • R.G. Larson. The Structure and Rheology of Complex Fluids. Oxford University Press, New York, 1999.

    Google Scholar 

  • W.B. Russel, E.J. Hinch, L.G. Leal, and G. Tieffenbruck. Rods falling near a vertical wall. J. Fluid Mech., 83: 273, 1977.

    Article  MATH  Google Scholar 

  • B. Snook, E. Guazzelli, and J.E. Butler. Vorticity alignment of rigid fibers in an oscillatory shear flow: Role of confinement. Phys. Fluids, 24: 121702, 2012.

    Article  Google Scholar 

  • B. Snook, L.M. Davidson, J.E. Butler, O. Pouliquen, and E. Guazzelli. Normal stress differences in suspensions of rigid fibres. J. Fluid Mech., 758: 486–507, 2014.

    Article  Google Scholar 

  • K. Yeo and M.R. Maxey. Numerical simulations of concentrated suspensions of mono-disperse particles in a Poiseuille flow. J. Fluid Mech., 682: 491–518, 2011.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

I thank Mr. Saif Shaikh and Mr. Scott Strednak for their careful reading of this manuscript. The author’s work has been supported, in part, by a grant from the National Science Foundation (Grant No. 1511787).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason E. Butler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Butler, J.E. (2017). Collective Dynamics of Particles in Viscous Flows with an Emphasis on Slender Rods. In: Marchioli, C. (eds) Collective Dynamics of Particles. CISM International Centre for Mechanical Sciences, vol 576. Springer, Cham. https://doi.org/10.1007/978-3-319-51226-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51226-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51224-2

  • Online ISBN: 978-3-319-51226-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics