Skip to main content

Pigment Analysis in Archaeology

  • Living reference work entry
  • First Online:
Encyclopedia of Global Archaeology

Introduction

Pigments are a common decorative component found in many archaeological and cultural contexts from around the world. The term “pigment” can be applied to materials that are used to color. Pigment analysis provides data that are valuable in interpreting cultural heritage.

Definition

Pigment analysis has been applied to a variety of materials, including pigments, paints, dyes, and inks. The color properties can arise from either inorganic (mineral pigments) or organic (dyes) materials or, in some cases, a combination of both. Depending on the chemical composition of the pigment and its binder, a variety of destructive and nondestructive techniques can be used to analyze the pigment.

Key Issues/Current Debates/Future Directions/Examples

The analysis of pigment materials has provided an important venue for understanding the cultural heritage as well as the technical qualities of the material itself. Pigments are found in rock art, frescoes, fabric, ceramic slips, manuscripts,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aquilia, E., G. Barone, V. Crupi, F. Longo, D. Majolino, P. Mazzoleni, and V. Venuti. 2012. Spectroscopic analyses of Hellenistic painted plasters from 2nd century B.C., Sicily (South Italy). Journal of Cultural Heritage 13 (2): 229–233. https://doi.org/10.1016/j.culher.2011.09.006.

    Article  Google Scholar 

  • Armitage, Ruth A., James E. Brady, Allan Cobb, John R. Southon, and Marvin W. Rowe. 2001. Mass spectrometric radiocarbon dates from three rock paintings of known age. American Antiquity 66 (3): 471–480.

    Article  Google Scholar 

  • Bergmann, U., P.L. Manning, and R.A. Wogelius. 2012. Chemical mapping of paleontological and archeological artifacts with synchrotron X-rays. In Annual review of analytical chemistry, ed. R.G. Cooks and E.S. Yeung, vol. 5, 361–389. Palo Alto: Annual Reviews.

    Google Scholar 

  • Bocchini, Paola, and Pietro Traldi. 1998. Organic mass spectrometry in our cultural heritage. Journal of Mass Spectrometry 33 (11): 1053–1062. https://doi.org/10.1002/(sici)1096-9888(1998110)33:11<1053::aid-jms745>3.0.co;2-g.

    Article  Google Scholar 

  • Bonizzoni, L., S. Caglio, A. Galli, and G. Poldi. 2008. A non invasive method to detect stratigraphy, thicknesses and pigment concentration of pictorial multilayers based on EDXRF and vis-RS: In situ applications. Applied Physics A: Materials Science & Processing 92 (1): 203–210.

    Article  Google Scholar 

  • Burgio, L., and R.J.H. Clark. 2001. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochimica Acta – Part A Molecular and Biomolecular Spectroscopy 57 (7): 1491–1521.

    Article  Google Scholar 

  • Cartechini, Laura, Manuela Vagnini, Melissa Palmieri, Lucia Pitzurra, Tommaso Mello, Joy Mazurek, and Giacomo Chiari. 2010. Immunodetection of proteins in ancient paint media. Accounts of Chemical Research 43 (6): 867–876. https://doi.org/10.1021/ar900279d.

    Article  Google Scholar 

  • Casadio, Francesca, Marco Leona, John R. Lombardi, and Richard Van Duyne. 2010. Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Accounts of Chemical Research 43 (6): 782–791. https://doi.org/10.1021/ar100019q.

  • Casoli, Antonella, Patizia C. Musini, and Gerardo Palla. 1996. Gas chromatographic-mass spectrometric approach to the problem of characterizing binding media in paintings. Journal of Chromatography A 731 (1–2): 237–246. https://doi.org/10.1016/0021-9673(95)01194-3.

    Article  Google Scholar 

  • Doménech-Carbó, Antonio, María Teresa Doménech-Carbó, Francisco López-López, Francisco Manuel Valle-Algarra, Laura Osete-Cortina, and Estrella Arcos-Von Haartman. 2013. Electrochemical characterization of Egyptian blue pigment in wall paintings using the voltammetry of microparticles methodology. Electroanalysis 25 (12): 2621–2630. https://doi.org/10.1002/elan.201300417.

    Article  Google Scholar 

  • Duwe, Samuel, and Hector Neff. 2007. Glaze and slip pigment analyses of pueblo IV period ceramics from east-central Arizona using time of flight-laser ablation-inductively coupled plasma-mass spectrometry (TOF-LA-ICP-MS). Journal of Archaeological Science 34 (3): 403–414. https://doi.org/10.1016/j.jas.2006.06.001.

    Article  Google Scholar 

  • Edwards, Howell G.M., and Laane Jaan. 2009. Raman spectroscopy in art and archaeology: A new light on historical mysteries. In Frontiers of molecular spectroscopy, 133–173. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Eiselt, B. Sunday, Rachel S. Popelka-Filcoff, J. Andrew Darling, and Michael D. Glascock. 2011. Hematite sources and archaeological ochres from Hohokam and O’odham sites in Central Arizona: An experiment in type identification and characterization. Journal of Archaeological Science 38 (11): 3019–3028. https://doi.org/10.1016/j.jas.2011.06.030.

    Article  Google Scholar 

  • Frahm, Ellery, and Roger C.P. Doonan. 2013. The technological versus methodological revolution of portable XRF in archaeology. Journal of Archaeological Science 40: 1425. https://doi.org/10.1016/j.jas.2012.10.013.

    Article  Google Scholar 

  • Henshilwood, C.S., J.C. Sealy, R. Yates, K. Cruz-Uribe, P. Goldberg, F.E. Grine, R.G. Klein, C. Poggenpoel, K. Van Niekerk, and I. Watts. 2001. Blombos cave, southern cape, South Africa: Preliminary report on the 1992–1999 excavations of the middle stone age levels. Journal of Archaeological Science 28 (4): 421–448.

    Article  Google Scholar 

  • Popelka-Filcoff, Rachel, Claire Lenehan, Michael Glascock, John Bennett, Attila Stopic, Jamie Quinton, Allan Pring, and Keryn Walshe. 2012. Evaluation of relative comparator and k0-NAA for characterization of aboriginal Australian ochre. Journal of Radioanalytical and Nuclear Chemistry 291 (1): 19–24. https://doi.org/10.1007/s10967-011-1236-2.

    Article  Google Scholar 

  • Popelka-Filcoff, Rachel S., Claire E. Lenehan, Enzo Lombi, Erica Donner, Daryl L. Howard, Martin D. de Jonge, David Paterson, Keryn Walshe, and Allan Pring. 2016. Novel application of X-ray fluorescence microscopy (XFM) for the non-destructive micro-elemental analysis of natural mineral pigments on Aboriginal Australian objects. Analyst 141 (Emerging Investigators Issue): 3657–3667. https://doi.org/10.1039/C5AN02065D.

    Article  Google Scholar 

  • Selvius DeRoo, Cathy, and Ruth Ann Armitage. 2011. Direct identification of dyes in textiles by direct analysis in real time-time of flight mass spectrometry. Analytical Chemistry 83 (18): 6924–6928. https://doi.org/10.1021/ac201747s.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Sarah Popelka-Filcoff .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Popelka-Filcoff, R.S. (2018). Pigment Analysis in Archaeology. In: Encyclopedia of Global Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-319-51726-1_2281-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51726-1_2281-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51726-1

  • Online ISBN: 978-3-319-51726-1

  • eBook Packages: Springer Reference HistoryReference Module Humanities and Social SciencesReference Module Humanities

Publish with us

Policies and ethics