Skip to main content

Sensory Substitution and the Neural Correlates of Navigation in Blindness

  • Chapter
  • First Online:
Mobility of Visually Impaired People

Abstract

This chapter reviews the most recent advances in sensory substitution and the neural correlates of navigation in congenital blindness . Studies have established the superior ability of congenitally blind (CB) participants with the aid of Sensory Substitution Devices (SSDs) to navigate new environments and detect the size and shape of obstacles in order to avoid them. These studies suggest that with training, CB can achieve a representation of space that is equivalent to that of the sighted. From a phenomenological point of view, sensation and perception provided by SSDs have been likened to real vision, but the question remains as to the subjective sensations (qualia) felt by users. We review recent theories on the phenomenological properties of sensory substitution and the recent literature on spatial abilities of participants using SSDs. From these different sources of research, we conclude that training-induced plastic changes enable task-specific brain activations. The recruitment of the primary visual cortex by nonvisual SSD stimulations and, the subsequent activations of associative visual cortices in the congenitally blind, suggest that the sensory information is treated in an amodal fashion; i.e.,: in terms of the task being performed rather than the sensory modality. These anatomical changes enable the embodiment of nonvisual information allowing SSD users to accomplish a multitude of “visual” tasks. We will emphasize here the abilities of CB individuals to navigate in real and virtual environments in spite of a large volumetric reduction in the posterior segment of the hippocampus , a key area involved in navigation . In addition, the superior behavioral performance of CB in a variety of sensory and cognitive tasks, combined with anatomical and functional MRI, underlines the susceptibility of the brain to training-induced plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reader is referred to a film produced by Discovery channel on the various abilities developed by CB and LB participants using the TDU. « The Plastic Fantastic Brain » https://www.youtube.com/watch?v=IzmZArOryGk&t=5s.

  2. 2.

    For more on this, please see the chapter, Harrar et al., The Multisensory Brain, Chap. 4 in this special edition).

References

  1. Abboud S, Maidenbaum S, Dehaene S, Amedi A (2015). A number-form area in the blind. Nat Commun 6

    Google Scholar 

  2. Aguirre GK, Detre JA, Alsop DC, D’Esposito M (1996) The parahippocampus subserves topographical learning in man. Cereb Cortex 6(6):823–829

    Article  Google Scholar 

  3. Alary F, Goldstein R, Duquette M, Chapman CE, Voss P, Lepore F (2008) Tactile acuity in the blind: a psychophysical study using a two-dimensional angle discrimination task. Exp Brain Res 187(4):587–594

    Article  Google Scholar 

  4. Amedi A, Chebat DR, Levy-Tzedek S, Buchs G, Maidenbaum S (2014) Returning sensory substitution to practical visual rehabilitation. Invest Ophthalmol Vis Sci 55(13):4146

    Google Scholar 

  5. Amedi A, Merabet LB, Camprodon J, Bermpohl F, Fox S, Ronen I, Kim DS, Pascual-Leone A (2008) Neural and behavioral correlates of drawing in an early blind painter: a case study. Brain Res 1242:252–262

    Google Scholar 

  6. Amedi A, Stern WM, Camprodon JA, Bermpohl F, Merabet L, Rotman S, Hermond C, Meijer P, Pascual-Leone A (2007) Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex. Nat Neurosci 10(6):687–689

    Google Scholar 

  7. Arnott SR, Thaler L, Milne JL, Kish D, Goodale MA (2013) Shape-specific activation of occipital cortex in an early blind echolocation expert. Neuropsychologia 51(5):938–949

    Article  Google Scholar 

  8. Bach-y-Rita P, Collins CC, Saunders FA, White B, Scadden L (1969) Vision substitution by tactile image projection. Nature 221:963–964

    Article  Google Scholar 

  9. Bach-y-Rita P (Ed.) (1972) Brain mechanisms in sensory substitution. Academic Press, New York

    Google Scholar 

  10. Bach-y-Rita P (1971) A tactile vision substitution system based on sensory plasticity. In: Visual prosthesis. Academic Press, New York

    Google Scholar 

  11. Baumann O, Mattingley JB (2013) Dissociable roles of the hippocampus and parietal cortex in processing of coordinate and categorical spatial information. Front Human Neurosci 8:73

    Google Scholar 

  12. Beaudry-Richard A, Harrar V, Auvray M, Spence C, Kupers R, Ptito M (2015) The multisensory substitution device: replacing vision with multisensory perception (poster). In: 16th Multisensory Research Forum (IMRF), Pisa, Italy, 13–16 June

    Google Scholar 

  13. Bhatlawande SS, Mukhopadhyay J, Mahadevappa M (2012) Ultrasonic spectacles and waist-belt for visually impaired and blind person. In: National conference on communications (NCC). IEEE, pp 1–4

    Google Scholar 

  14. Bird CM, Bisby JA, Burgess N (2012) The hippocampus and spatial constraints on mental imagery. Front Human Neurosci 6:142

    Google Scholar 

  15. Bohbot VD, Iaria G, Petrides M (2004) Hippocampal function and spatial memory: evidence from functional neuroimaging in healthy participants and performance of patients with medial temporal lobe resections. Neuropsychology 18(3):418

    Article  Google Scholar 

  16. Borisoff JF, Elliott SL, Hocaloski S, Birch GE (2010) The development of a sensory substitution system for the sexual rehabilitation of men with chronic spinal cord injury. J Sex Med 7(11):3647–3658

    Article  Google Scholar 

  17. Buchs G, Maidenbaum S, Amedi A (2014) Obstacle identification and avoidance using the ‘EyeCane’. EuroHaptics, LNCS 8619:13–18

    Google Scholar 

  18. Buchs G, Maidenbaum S, Amedi A, Levy-Tzedek S (2015) Virtually zooming-in with sensory substitution for blind users. In: International conference on Virtual rehabilitation proceedings (ICVR). IEEE, pp 133–134

    Google Scholar 

  19. Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35(4):625–641

    Article  Google Scholar 

  20. Burgess N, Jackson A, Hartley T, O’keefe J (2000) Predictions derived from modelling the hippocampal role in navigation. Biol Cybern 83(3):301–312

    Google Scholar 

  21. Burton H, McLaren DG, Sinclair RJ (2006) Reading embossed capital letters: an fMRI study in blind and sighted individuals. Hum Brain Mapp 27(4):325–339

    Article  Google Scholar 

  22. Buzsáki G, Moser EI (2013) Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 16(2):130–138

    Article  Google Scholar 

  23. Byrne P, Becker S, Burgess N (2007) Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol Rev 114(2):340

    Article  Google Scholar 

  24. Cappagli G, Gori M (2016) Auditory spatial localization: developmental delay in children with visual impairments. Res Dev Disabil 53:391–398

    Article  Google Scholar 

  25. Cappagli G, Cocchi E, Gori M. (2015) Auditory and proprioceptive spatial impairments in blind children and adults. Develop Sci

    Google Scholar 

  26. Cattaneo Z, Vecchi T (2008) Supramodality effects in visual and haptic spatial processes. J Exp Psychol Learn Mem Cogn 34:631–642

    Article  Google Scholar 

  27. Chan CC, Wong AW, Ting KH, Whitfield-Gabrieli S, He J, Lee T (2012) Cross auditory-spatial learning in early-blind individuals. Hum Brain Mapp 33(11):2714–2727

    Article  Google Scholar 

  28. Chandler E, Worsfold J (2013) Understanding the requirements of geographical data for blind and partially sighted people to make journeys more independently. Appl Ergon 44(6):919–928

    Article  Google Scholar 

  29. Chebat DR, Chen JK, Schneider F, Ptito A, Kupers R, Ptito M (2007) Alterations in right posterior hippocampus in early blind individuals. NeuroReport 18(4):329–333

    Article  Google Scholar 

  30. Chebat DR, Maidenbaum S, Amedi A (2015) Navigation using sensory substitution in real and virtual mazes. PLoS ONE 10(6):e0126307

    Article  Google Scholar 

  31. Chebat DR, Rainville C, Kupers R, Ptito M (2007) Tactile—‘visual’ acuity of the tongue in early blind individuals. NeuroReport 18(18):1901–1904

    Article  Google Scholar 

  32. Chebat DR, Schneider FC, Kupers R, Ptito M (2011) Navigation with a sensory substitution device in congenitally blind individuals. NeuroReport 22(7):342–347

    Article  Google Scholar 

  33. Chiou R, Stelter M, Rich AN (2013) Beyond colour perception: auditory–visual synaesthesia induces experiences of geometric objects in specific locations. Cortex 49(6):1750–1763

    Article  Google Scholar 

  34. Cohen L, Dehaene S, Naccache L, Lehéricy S, Dehaene-Lambertz G, Hénaff MA, Michel F (2000) The visual word form area. Brain 123(2):291–307

    Article  Google Scholar 

  35. Cohen LG, Celnik P, Pascual-Leone A, Corwell B, Faiz L, Dambrosia J, Hallett M (1997) Functional relevance of cross-modal plasticity in blind humans. Nature 389(6647), 180–183

    Google Scholar 

  36. Collignon O, Lassonde M, Lepore F, Bastien D, Veraart C (2007) Functional cerebral reorganization for auditory spatial processing and auditory substitution of vision in early blind subjects. Cereb Cortex 17(2):457–465

    Article  Google Scholar 

  37. Collignon O, Renier L, Bruyer R, Tranduy D, Veraart C (2006) Improved selective and divided spatial attention in early blind subjects. Brain Res 1075(1):175–182

    Article  Google Scholar 

  38. Committeri G, Galati G, Paradis AL, Pizzamiglio L, Berthoz A, LeBihan D (2004) Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. J Cogn Neurosci 16(9):1517–1535

    Article  Google Scholar 

  39. Compton DM, Griffith HR, McDaniel WF, Foster RA, Davis BK (1997) The flexible use of multiple cue relationships in spatial navigation: a comparison of water maze performance following hippocampal, medial septal, prefrontal cortex, or posterior parietal cortex lesions. Neurobiol Learn Mem 68(2):117–132

    Article  Google Scholar 

  40. Deroy O, Auvray M (2014) A crossmodal perspective on sensory substitution. Percep Modalities 327–349

    Google Scholar 

  41. Desimone R (1991) Face-selective cells in the temporal cortex of monkeys. J Cogn Neurosci 3(1):1–8

    Article  MathSciNet  Google Scholar 

  42. Deutschländer A, Stephan T, Hüfner K, Wagner J, Wiesmann M, Strupp M, Brandt T, Jahn K (2009) Imagined locomotion in the blind: an fMRI study. Neuroimage 45(1):122–128

    Article  Google Scholar 

  43. Deutschländer A, Stephan T, Hüfner K, Wagner J, Wiesmann M, Strupp M, Brandt T, Jahn K (2009) Vestibular cortex activation during locomotor imagery in the blind. Ann NY Acad Sci 1164(1):350–352

    Article  Google Scholar 

  44. Dietrich S, Hertrich I, Ackermann H (2013) Training of ultra-fast speech comprehension induces functional reorganization of the central-visual system in late-blind humans. Front Hum Neurosci 7(701):10–3389

    Google Scholar 

  45. Dilks DD, Julian JB, Paunov AM, Kanwisher N (2013) The occipital place area is causally and selectively involved in scene perception. J Neurosci 33(4):1331–1336

    Article  Google Scholar 

  46. Doeller CF, Barry C, Burgess N (2010) Evidence for grid cells in a human memory network. Nature 463(7281):657–661

    Article  Google Scholar 

  47. Doeller CF, King JA, Burgess N (2008) Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc Natl Acad Sci 105(15):5915–5920

    Article  Google Scholar 

  48. Doucet ME, Guillemot JP, Lassonde M, Gagné JP, Leclerc C, Lepore F (2005) Blind subjects process auditory spectral cues more efficiently than sighted individuals. Exp Brain Res 160(2):194–202

    Article  Google Scholar 

  49. Downing PE, Jiang Y, Shuman M, Kanwisher N (2001) A cortical area selective for visual processing of the human body. Science 293(5539):2470–2473

    Article  Google Scholar 

  50. Duarte IC, Ferreira C, Marques J, Castelo-Branco M (2014) Anterior/posterior competitive deactivation/activation dichotomy in the human hippocampus as revealed by a 3D navigation task. PLoS ONE 9(1):e86213

    Article  Google Scholar 

  51. Dunai L, Peris-Fajarnés G, Lluna E, Defez B (2013) Sensory navigation device for blind people. J Navig 66(03):349–362

    Article  Google Scholar 

  52. D’Angiulli AMEDEO, Waraich P (2002) Enhanced tactile encoding and memory recognition in congenital blindness. Int J Rehabil Res 25(2):143–145

    Article  Google Scholar 

  53. Ekstrom AD (2015) Why vision is important to how we navigate. Hippocampus 25(6):731–735

    Article  Google Scholar 

  54. Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425(6954):184–188

    Article  Google Scholar 

  55. Elli GV, Benetti S, Collignon O (2014) Is there a future for sensory substitution outside academic laboratories? Multisensory Res 27(5–6):271–291

    Article  Google Scholar 

  56. Epstein RA (2008) Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn Sci 12(10):388–396

    Article  Google Scholar 

  57. Epstein R, Harris A, Stanley D, Kanwisher N (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron 23(1):115–125

    Article  Google Scholar 

  58. Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392(6676):598–601

    Article  Google Scholar 

  59. Epstein RA, Parker WE, Feiler AM (2007) Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J Neurosci 27(23):6141–6149

    Article  Google Scholar 

  60. Epstein RA, Vass LK (2014) Neural systems for landmark-based wayfinding in humans. Philos Trans R Soc Lond B Biol Sci 369(1635):20120533

    Article  Google Scholar 

  61. Finkelstein A, Derdikman D, Rubin A, Foerster JN, Las L, Ulanovsky N (2015) Three-dimensional head-direction coding in the bat brain. Nature 517(7533):159–164

    Article  Google Scholar 

  62. Finocchietti S, Cappagli G, Gori M (2015) Encoding audio motion: spatial impairment in early blind individuals. Front Psychol 6

    Google Scholar 

  63. Fornazzari L, Fischer CE, Ringer L, Schweizer TA (2012) “Blue is music to my ears”: multimodal synesthesias after a thalamic stroke. Neurocase 18(4):318–322

    Article  Google Scholar 

  64. Fortin M, Voss P, Lord C, Lassonde M, Pruessner J, Saint-Amour D, Rainville C, Lepore F (2008) Wayfinding in the blind: larger hippocampal volume and supranormal spatial navigation. Brain 131(11):2995–3005

    Google Scholar 

  65. Foster DJ, Knierim JJ (2012) Sequence learning and the role of the hippocampus in rodent navigation. Curr Opin Neurobiol 22(2):294–300

    Article  Google Scholar 

  66. Gagnon L, Schneider FC, Siebner HR, Paulson OB, Kupers R, Ptito M (2012) Activation of the hippocampal complex during tactile maze solving in congenitally blind subjects. Neuropsychologia 50(7):1663–1671

    Article  Google Scholar 

  67. Geva-Sagiv M, Las L, Yovel Y, Ulanovsky N (2015) Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nat Rev Neurosci 16(2):94–108

    Article  Google Scholar 

  68. Giudice NA, Betty MR, Loomis JM (2011) Functional equivalence of spatial images from touch and vision: Evidence from spatial updating in blind and sighted individuals. J Exp Psychol Learn Mem Cogn 37(3):621

    Article  Google Scholar 

  69. Giudice NA, Klatzky RL, Bennett CR, Loomis JM (2013) Perception of 3-D location based on vision, touch, and extended touch. Exp Brain Res 224(1):141–153

    Article  Google Scholar 

  70. Giudice NA, Tietz JD (2008) Learning with virtual verbal displays: effects of interface fidelity on cognitive map development. In: International conference on spatial cognition. Springer, Berlin, pp 121–137

    Google Scholar 

  71. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25

    Article  Google Scholar 

  72. Goodrich-Hunsaker NJ, Hunsaker MR, Kesner RP (2005) Effects of hippocampus sub-regional lesions for metric and topological spatial information processing. Soc Neurosci, Abstr

    Google Scholar 

  73. Gori M, Sandini G, Martinoli C, Burr DC (2014) Impairment of auditory spatial localization in congenitally blind human subjects. Brain 137(1):288–293

    Article  Google Scholar 

  74. Gougoux F, Lepore F, Lassonde M, Voss P, Zatorre RJ, Belin P (2004) Neuropsychology: pitch discrimination in the early blind. Nature 430(6997):309

    Article  Google Scholar 

  75. Greicius MD, Krasnow B, Boyett-Anderson JM, Eliez S, Schatzberg AF, Reiss AL, Menon V (2003) Regional analysis of hippocampal activation during memory encoding and retrieval: fMRI study. Hippocampus 13(1):164–174

    Article  Google Scholar 

  76. Guderian S, Dzieciol AM, Gadian DG, Jentschke S, Doeller CF, Burgess N, Mishkin M, Vargha-Khadem F (2015) Hippocampal volume reduction in humans predicts impaired allocentric spatial memory in virtual-reality navigation. J Neurosci 35(42):14123–14131

    Google Scholar 

  77. Hackert VH, den Heijer T, Oudkerk M, Koudstaal PJ, Hofman A, Breteler MMB (2002) Hippocampal head size associated with verbal memory performance in nondemented elderly. Neuroimage 17(3):1365–1372

    Article  Google Scholar 

  78. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052):801–806

    Article  Google Scholar 

  79. Hamid SN, Stankiewicz B, Hayhoe M (2010) Gaze patterns in navigation: encoding information in large-scale environments. J Vision 10(12):28

    Article  Google Scholar 

  80. Hamilton RH, Pascual-Leone A, Schlaug G (2004) Absolute pitch in blind musicians. NeuroReport 15(5):803–806

    Article  Google Scholar 

  81. Hamilton-Fletcher G, Obrist M, Watten P, Mengucci M, Ward J (2016) I always wanted to see the night sky: blind user preferences for Sensory Substitution Devices

    Google Scholar 

  82. Hartcher-O’Brien J, Auvray M (2014) The process of distal attribution illuminated through studies of sensory substitution. Multisensory Res 27(5–6):421–441

    Google Scholar 

  83. Hartcher-O’Brien J, Auvray M, Hayward V (2015) Perception of distance-to-obstacle through time-delayed tactile feedback. In World Haptics Conference (WHC), 2015 IEEE (pp 7–12). IEEE

    Google Scholar 

  84. Hassabis D, Chu C, Rees G, Weiskopf N, Molyneux PD, Maguire EA (2009) Decoding neuronal ensembles in the human hippocampus. Curr Biol 19(7):546–554

    Article  Google Scholar 

  85. Haxby JV, Grady CL, Horwitz B, Ungerleider LG, Mishkin M, Carson RE, Herscovitch P, Schapiro MB, Rapoport SI (1991) Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Nat Acad Sci 88(5):1621–1625

    Google Scholar 

  86. He C, Peelen MV, Han Z, Lin N, Caramazza A, Bi Y (2013) Selectivity for large nonmanipulable objects in scene-selective visual cortex does not require visual experience. Neuroimage 79:1–9

    Article  Google Scholar 

  87. Heimler B, Striem-Amit E, Amedi A (2015) Origins of task-specific sensory-independent organization in the visual and auditory brain: neuroscience evidence, open questions and clinical implications. Curr Opin Neurobiol 35:169–177

    Article  Google Scholar 

  88. Herman JF, Herman TG, Chatman SP (1983) Constructing cognitive maps from partial information: a demonstration study with congenitally blind subjects. J Vis Impair Blindness

    Google Scholar 

  89. Hersh MA, Johnson MA (2010) A robotic guide for blind people. Part 1. A multi-national survey of the attitudes, requirements and preferences of potential end-users. Appl Bion Biomech 7(4):277–288

    Article  Google Scholar 

  90. Hill J, Black J (2003) The miniguide: a new electronic travel device. J Vis Impair Blindness 97(10):1–6

    Google Scholar 

  91. Huxter J, Burgess N, O’Keefe J (2003) Independent rate and temporal coding in hippocampal pyramidal cells. Nature 425(6960):828–832

    Article  Google Scholar 

  92. Iachini T, Ruggiero G (2010) The role of visual experience in mental scanning of actual pathways: evidence from blind and sighted people. Perception 39(7):953–969

    Article  Google Scholar 

  93. Iachini T, Ruggiero G, Ruotolo F (2014) Does blindness affect egocentric and allocentric frames of reference in small and large scale spaces? Behav Brain Res 273:73–81

    Article  Google Scholar 

  94. Iaria G, Chen JK, Guariglia C, Ptito A, Petrides M (2007) Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. Eur J Neurosci 25(3):890–899

    Article  Google Scholar 

  95. Iaria G, Petrides M, Dagher A, Pike B, Bohbot VD (2003) Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. J Neurosci 23(13):5945–5952

    Google Scholar 

  96. Ione A, Tyler C (2004) Neuroscience, history and the arts synesthesia: is F-sharp colored violet? J Hist Neurosci 13(1):58–65

    Article  Google Scholar 

  97. Jacobs J, Weidemann CT, Miller JF, Solway A, Burke JF, Wei X, Kahana MJ (2013) Direct recordings of grid-like neuronal activity in human spatial navigation. Nat Neurosci 16(9):1188–1190

    Article  Google Scholar 

  98. Jahn K, Wagner J, Deutschländer A, Kalla R, Hüfner K, Stephan T, Brandt T (2009) Human hippocampal activation during stance and locomotion. Ann NY Acad Sci 1164(1):229–235

    Article  Google Scholar 

  99. Julian JB, Ryan J, Hamilton RH, Epstein RA (2016) The occipital place area is causally involved in representing environmental boundaries during navigation. Curr Biol 26(8):1104–1109

    Article  Google Scholar 

  100. Kamps FS, Julian JB, Kubilius J, Kanwisher N, Dilks DD (2016) The occipital place area represents the local elements of scenes. NeuroImage 132:417–424

    Article  Google Scholar 

  101. Karcher S, Fenzlaff S, Hartmann D, Nagel S, Konig P (2012) Sensory augmentation for the blind. Front Hum Neurosci 1(6):37. doi:10.3389/fnhum.2012.00037

    Google Scholar 

  102. Kaspar K, König S, Schwandt J, König P (2014) The experience of new sensorimotor contingencies by sensory augmentation. Conscious Cogn 28:47–63

    Article  Google Scholar 

  103. Kay L (1974) A sonar aid to enhance spatial perception of the blind: engineering design and evaluation. Radio Electron Eng 44(11):605–627

    Article  Google Scholar 

  104. King AJ (2014) What happens to your hearing if you are born blind? Brain 137(1):6–8

    Article  Google Scholar 

  105. King AJ (2009) Visual influences on auditory spatial learning. Philos Trans R Soc London B Biol Sci 364(1515):331–339

    Google Scholar 

  106. Kober SE, Wood G, Kampl C, Neuper C, Ischebeck A (2014) Electrophysiological correlates of mental navigation in blind and sighted people. Behav Brain Res 273:106–115

    Article  Google Scholar 

  107. Kosslyn SM, Chabris CF, Marsolek CJ, Koenig O (1992) Categorical versus coordinate spatial relations: computational analyses and computer simulations. J Exp Psychol Hum Percept Perform 18(2):562

    Article  Google Scholar 

  108. Kosslyn SM, Koenig O, Barrett A, Cave CB, Tang J, Gabrieli JD (1989) Evidence for two types of spatial representations: hemispheric specialization for categorical and coordinate relations. J Exp Psychol Hum Percept Perform 15(4):723

    Article  Google Scholar 

  109. Krishna S, Bala S, McDaniel T, McGuire S, Panchanathan S (2010) VibroGlove: an assistive technology aid for conveying facial expressions. In: Proceedings of the 28th of the international conference extended abstracts on human factors in computing systems. ACM, Atlanta, Georgia, USA, pp 3637–3642. doi:10.1145/1753846.1754031

  110. Kupers R, Chebat DR, Madsen KH, Paulson OB, Ptito M (2010) Neural correlates of virtual route recognition in congenital blindness. Proc Natl Acad Sci 107(28):12716–12721

    Article  Google Scholar 

  111. Kupers R, Ptito M (2014) Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neurosci Biobehav Rev 41:36–52

    Article  Google Scholar 

  112. Kupers R, Pietrini P, Ricciardi E, Ptito M (2011) The nature of consciousness in the visually deprived brain. Front Psychol 2(4)

    Google Scholar 

  113. Lacey S, Sathian K (2014) Visuo-haptic multisensory object recognition, categorization, and representation. Front Psychol 5:730

    Article  Google Scholar 

  114. Lacey S, Stilla R, Sreenivasan K, Deshpande G, Sathian K (2014) Spatial imagery in haptic shape perception. Neuropsychologia 60:144–158

    Article  Google Scholar 

  115. Lahav O (2006) Using virtual environment to improve spatial perception by people who are blind. Cyberpsychology Behav 9(2):174–177

    Google Scholar 

  116. Law CT, Gold JI (2008) Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area. Nat Neurosci 11(4):505–513

    Article  Google Scholar 

  117. Leporé N, Shi Y, Lepore F, Fortin M, Voss P, Chou YY, Lord C, Lassonde M, Dinov ID, Toga AW, Thompson PM (2009) Pattern of hippocampal shape and volume differences in blind subjects. Neuroimage 46(4):949–957

    Google Scholar 

  118. Lessard N, Pare M, Lepore F, Lassonde M (1998) Early-blind human subjects localize sound sources better than sighted subjects. Nature 395(6699):278–280

    Article  Google Scholar 

  119. Lever C, Burton S, Jeewajee A, O’Keefe J, Burgess N (2009) Boundary vector cells in the subiculum of the hippocampal formation. J Neurosci 29(31):9771–9777

    Article  Google Scholar 

  120. Levy-Tzedek S, Hanassy S, Abboud S, Maidenbaum S, Amedi A (2012) Fast, accurate reaching movements with a visual-to-auditory sensory substitution device. Restorative Neurol Neurosci 30(4):313–323

    Google Scholar 

  121. Lewald J (2013) Exceptional ability of blind humans to hear sound motion: implications for the emergence of auditory space. Neuropsychologia 51(1):181–186

    Article  Google Scholar 

  122. Loomis JM, Klatzky RL, Giudice NA (2012) Sensory substitution of vision: importance of perceptual and cognitive processing. CRC Press, Boca Raton, pp 162–191

    Google Scholar 

  123. Loomis JM, Klatzky RL, Golledge RG, Cicinelli JG, Pellegrino JW, Fry PA (1993) Nonvisual navigation by blind and sighted: assessment of path integration ability. J Exp Psychol Gen 122(1):73

    Article  Google Scholar 

  124. Loomis JM, Wiener WR, Welsh RL, Blasch BB (2010) Sensory substitution for orientation and mobility: what progress are we making? In: Guth DA, Rieser JJ, Ashmead DH (eds) Perceiving to move and moving to perceive: control of locomotion by students with vision loss. Foundations of Orientation and Mobility (History and Theory), pp 7–10

    Google Scholar 

  125. Lynch K (1960) The image of the city, vol 11. MIT Press, Cambridge

    Google Scholar 

  126. Maguire EA, Frackowiak RSJ, Frith CD (1996) Learning to find your way: a role for the human hippocampal formation. Proc R Soc Lond B Biol Sci 263(1377):1745–1750

    Article  Google Scholar 

  127. Maguire EA, Frackowiak RS, Frith CD (1997) Recalling routes around London: activation of the right hippocampus in taxi drivers. J Neurosci 17(18):7103–7110

    Google Scholar 

  128. Maguire EA, Frith CD, Burgess N, Donnett JG, O’Keefe J (1998) Knowing where things are: parahippocampal involvement in encoding object locations in virtual large-scale space. Cogn Neurosci J 10(1):61–76

    Article  Google Scholar 

  129. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci 97(8):4398–4403

    Article  Google Scholar 

  130. Maguire EA, Woollett K, Spiers HJ (2006) London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16(12):1091–1101

    Article  Google Scholar 

  131. Maidenbaum S, Abboud S, Amedi A (2014) Sensory substitution: closing the gap between basic research and widespread practical visual rehabilitation. Neurosci Biobehav Rev 41:3–15

    Article  Google Scholar 

  132. Maidenbaum S, Abboud S, Buchs G, Amedi A (2015) Blind in a virtual world: using sensory substitution for generically increasing the accessibility of graphical virtual environments. In Virtual Reality (VR), 2015 IEEE (pp 233–234). IEEE

    Google Scholar 

  133. Maidenbaum S, Arbel R, Abboud S, Chebat D, Levy-Tzedek S, Amedi A (2012) Virtual 3D shape and orientation discrimination using point distance information. In Proceedings of the 9th international conference disability, virtual reality & associated technologies, pp 471–474

    Google Scholar 

  134. Maidenbaum S, Buchs G, Abboud S, Lavi-Rotbain O, Amedi A (2016) Perception of graphical virtual environments by blind users via sensory substitution. PLoS ONE 11(2):e0147501

    Article  Google Scholar 

  135. Maidenbaum S, Hanassy S, Abboud S, Buchs G, Chebat DR, Levy-Tzedek S, Amedi A (2014) The “EyeCane”, a new electronic travel aid for the blind: Technology, behavior & swift learning. Restorative Neurol Neurosci 32(6):813–824

    Google Scholar 

  136. Maidenbaum S, Levy-Tzedek S, Chebat DR, Amedi A (2013) Increasing accessibility to the blind of virtual environments, using a virtual mobility aid based on the “EyeCane”: feasibility study. PLoS ONE 8(8):e72555

    Article  Google Scholar 

  137. Maidenbaum S, Levy-Tzedek S, Chebat DR, Namer-Furstenberg R, Amedi A (2014) The effect of extended sensory range via the EyeCane sensory substitution device on the characteristics of visionless virtual navigation. Multisensory Res 27(5–6):379–397

    Article  Google Scholar 

  138. Maller JJ, Thomson RH, Ng A, Mann C, Eager M, Ackland H, Fitzgerald PB, Egan G, Rosenfeld JV (2016) Brain morphometry in blind and sighted subjects. J Clin Neurosci

    Google Scholar 

  139. Mann S, Huang J, Janzen R, Raymond L, Rampersad V, Chen A, Doha T (2011) Blind navigation with a wearable range camera and vibrotactile helmet. In: Proceedings of the 19th ACM international conference on multimedia, pp 1325–1328

    Google Scholar 

  140. Marks LE (1975) On colored-hearing synesthesia: cross-modal translations of sensory dimensions. Psychol Bull 82(3):303

    Article  Google Scholar 

  141. Marston JR, Church RL (2005) A relative access measure to identify barriers to efficient transit use by persons with visual impairments. Disabil Rehabil 27(13):769–779

    Article  Google Scholar 

  142. Matteau I, Kupers R, Ricciardi E, Pietrini P, Ptito M (2010) Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals. Brain Res Bull 82(5):264–270

    Article  Google Scholar 

  143. Matteau I, Kupers R, Ptito M (2008) Tactile shape recognition through the tongue in the congenitally blind. In: FENS. Abstracts, vol 4, pp 153–158

    Google Scholar 

  144. McClelland JL, McNaughton BL, O’Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102(3):419

    Article  Google Scholar 

  145. Meijer PB (1992) An experimental system for auditory image representations. IEEE Trans Biomed Eng 39:112–121

    Article  Google Scholar 

  146. Merabet LB, Connors EC, Halko MA, Sánchez J (2012) Teaching the blind to find their way by playing video games. PLoS ONE 7(9):e44958

    Article  Google Scholar 

  147. Merabet LB, Sánchez J (2016) Development of an audio-haptic virtual interface for navigation of large-scale environments for people who are blind. In: International conference on universal access in human-computer interaction. Springer International Publishing, Berlin, pp 595–606

    Google Scholar 

  148. Millar S (1988) Models of sensory deprivation: the nature/nurture dichotomy and spatial representation in the blind. Int J Behav Dev 11(1):69–87

    Article  Google Scholar 

  149. Milner AD, Goodale MA (2008) Two visual systems re-viewed. Neuropsychologia 46(3):774–785

    Article  Google Scholar 

  150. Montello DR, Sas C (2006) Human factors of wayfinding in navigation

    Google Scholar 

  151. Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Neuroscience 31(1):69

    Google Scholar 

  152. Muessig L, Hauser J, Wills TJ, Cacucci F (2016) Place cell networks in pre-weanling rats show associative memory properties from the onset of exploratory behavior. Cereb Cortex 174

    Google Scholar 

  153. Murphy MC, Fisher C, Kim SG, Schuman JS, Nau AC, Chan KC (2014) Top down influence on the visual cortex of the blind during auditory sensory substitution. In: Proceedings of International Society for Magnetic Resonance in Medicine, vol 22, p 579

    Google Scholar 

  154. Nau AC, Pintar C, Fisher C, Jeong JH, Jeong K (2014) A standardized obstacle course for assessment of visual function in ultra low vision and artificial vision. J Visualized Exp (JoVE) 84:e51205–e51205

    Google Scholar 

  155. Nitz DA (2006) Tracking route progression in the posterior parietal cortex. Neuron 49(5):747–756

    Article  Google Scholar 

  156. Nitz D (2009) Parietal cortex, navigation, and the construction of arbitrary reference frames for spatial information. Neurobiol Learn Mem 91(2):179–185

    Article  Google Scholar 

  157. Noppeney U (2007) The effects of visual deprivation on functional and structural organization of the human brain. Neurosci Biobehav Rev 31(8):1169–1180

    Article  Google Scholar 

  158. Noë A (2010) Vision without representation. In: Perception, action, and consciousness: sensorimotor dynamics and two visual systems, pp 245–256

    Google Scholar 

  159. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map, vol 3. Clarendon Press, Oxford, pp 483–484

    Google Scholar 

  160. O’Regan JK, Noë A (2001) A sensorimotor account of vision and visual consciousness. Behav Brain Sci 24(05):939–973

    Article  Google Scholar 

  161. Passini R, Proulx G, Rainville C (1990) The spatio-cognitive abilities of the visually impaired population. Environ Behav 22(1):91–118

    Google Scholar 

  162. Patla AE, Prentice SD, Gobbi LT (1996) Visual control of obstacle avoidance during locomotion: strategies in young children, young and older adults. Adv Psychol 114:257–277

    Article  Google Scholar 

  163. Patla AE, Vickers JN (1997) Where and when do we look as we approach and step over an obstacle in the travel path? NeuroReport 8(17):3661–3665

    Article  Google Scholar 

  164. Phillips B, Zhao H (1993) Predictors of assistive technology abandonment. Assistive Technol 5(1):36–45

    Article  Google Scholar 

  165. Pietrini P, Ptito M, Kupers R (2009) Blindness and consciousness: new light from the dark. In: The neurology of consciousness: Cognitive neuroscience and neuropathology, pp 360–374

    Google Scholar 

  166. Pissaloux E, Velazquez R, Hersh M, Uzan G (2016) Towards a cognitive model of human mobility: an investigation of tactile perception for use in mobility devices. J Navig 1–17

    Google Scholar 

  167. Poirier C, Collignon O, DeVolder AG, Renier L, Vanlierde A, Tranduy D, Scheiber C (2005) Specific activation of the V5 brain area by auditory motion processing: an fMRI study. Cogn Brain Res 25(3):650–658

    Article  Google Scholar 

  168. Proulx MJ (2010) Synthetic synaesthesia and sensory substitution. Conscious Cogn 19(1):501–503

    Article  Google Scholar 

  169. Proulx MJ, Pasqualotto A, Taya S (2012) The role of visual experience for spatial numerical associations. Seeing Perceiving 25:222-222

    Google Scholar 

  170. Ptito M, Matteau I, Gjedde A, Kupers R (2009) Recruitment of the middle temporal area by tactile motion in congenital blindness. NeuroReport 20(6):543–547

    Article  Google Scholar 

  171. Ptito M, Moesgaard SM, Gjedde A, Kupers R (2005) Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain 128(3):606–614

    Article  Google Scholar 

  172. Ptito M, Schneider FC, Paulson OB, Kupers R (2008) Alterations of the visual pathways in congenital blindness. Exp Brain Res 187(1):41–49

    Article  Google Scholar 

  173. Ptito M, Matteau I, Zhi Wang A, Paulson OB, Siebner HR, Kupers R (2012) Crossmodal recruitment of the ventral visual stream in congenital blindness. Neural Plast

    Google Scholar 

  174. Rao AS, Gubbi J, Palaniswami M, Wong E (2016, May). A vision-based system to detect potholes and uneven surfaces for assisting blind people. In 2016 IEEE International Conference on Communications (ICC)(pp 1–6). IEEE

    Google Scholar 

  175. Reich L, Szwed M, Cohen L, Amedi A (2011) A ventral visual stream reading center independent of visual experience. Curr Biol 21(5):363–368

    Article  Google Scholar 

  176. Reich L, Maidenbaum S, Amedi A (2012) The brain as a flexible task machine: implications for visual rehabilitation using noninvasive vs. invasive approaches. Curr Opin Neurol 25(1):86–95

    Google Scholar 

  177. Reynolds Z, Glenney B (2009) Interactive training for sensory substitution devices. In: Proceedings of AP-CAP, pp 131–134

    Google Scholar 

  178. Roder B, Teder-SaÈlejaÈrvi W, Sterr A, RoÈsler F, Hillyard SA, Neville HJ (1999) Improved auditory spatial tuning in blind humans. Nature 400(6740):162–166

    Article  Google Scholar 

  179. Rolls ET, O’Mara SM (1995) View-responsive neurons in the primate hippocampal complex. Hippocampus 5(5):409–424

    Article  Google Scholar 

  180. Sadato N, Pascual-Leone A, Grafman J, Deiber MP, Ibanez V, Hallett M (1998) Neural networks for Braille reading by the blind. Brain 121(7):1213–1229

    Article  Google Scholar 

  181. Sadeghi SG, Minor LB, Cullen KE (2012) Neural correlates of sensory substitution in vestibular pathways following complete vestibular loss. J Neurosci 32(42):14685–14695

    Article  Google Scholar 

  182. Saenz M, Lewis LB, Huth AG, Fine I, Koch C (2008) Visual motion area MT+/V5 responds to auditory motion in human sight-recovery subjects. J Neurosci 28(20):5141–5148

    Google Scholar 

  183. Sathian K, Zangaladze A (2002) Feeling with the mind’s eye: contribution of visual cortex to tactile perception. Behav Brain Res 135(1):127–132

    Google Scholar 

  184. Sathian K, Lacey S (2008) Visual cortical involvement during tactile perception in blind and sighted individuals. Blindness and brain plasticity in navigation and object perception. Erlbaum, Mahwah, pp 113–125

    Google Scholar 

  185. Schinazi VR, Epstein RA (2010) Neural correlates of real-world route learning. Neuroimage 53(2):725–735

    Article  Google Scholar 

  186. Schinazi VR, Thrash T, Chebat DR (2016) Spatial navigation by congenitally blind individuals. Wiley Interdisc Rev Cogn Sci 7(1):37–58

    Article  Google Scholar 

  187. Segond H, Weiss D, Sampaio E (2005) Human spatial navigation via a visuo-tactile sensory substitution system. Perception 34(10):1231–1249

    Article  Google Scholar 

  188. Shimony JS, Burton H, Epstein AA, McLaren DG, Sun SW, Snyder AZ (2006) Diffusion tensor imaging reveals white matter reorganization in early blind humans. Cereb Cortex 16(11):1653–1661

    Article  Google Scholar 

  189. Shmuelof L, Zohary E (2005) Dissociation between ventral and dorsal fMRI activation during object and action recognition. Neuron 47(3):457–470

    Article  Google Scholar 

  190. Shoval S, Borenstein J, Koren Y (1998) Auditory guidance with the navbelt-a computerized travel aid for the blind. IEEE Trans Syst Man Cybern Appl Rev 28(3):459–467

    Article  Google Scholar 

  191. Spence C (2014) The skin as a medium for sensory substitution. Multisensory Res 27(5–6):293–312

    Google Scholar 

  192. Spiers HJ, Maguire EA (2006) Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage 31(4):1826–1840

    Article  Google Scholar 

  193. Spiers HJ, Maguire EA (2007) Decoding human brain activity during real-world experiences. Trends Cogn Sci 11(8):356–365

    Article  Google Scholar 

  194. Stoll C, Palluel-Germain R, Fristot V, Pellerin D, Alleysson D, Graff C (2015) Navigating from a depth image converted into sound. Appl Bionics Biomech 2015

    Google Scholar 

  195. Striem-Amit E, Amedi A (2014) Visual cortex extrastriate body-selective area activation in congenitally blind people “seeing” by using sounds. Curr Biol 24(6):687–692

    Article  Google Scholar 

  196. Striem-Amit E, Cohen L, Dehaene S, Amedi A (2012a) Reading with sounds: sensory substitution selectively activates the visual word form area in the blind. Neuron 76(3):640–652

    Article  Google Scholar 

  197. Striem-Amit E, Dakwar O, Hertz U, Meijer P, Stern W, Pascual-Leone A, Amedi A (2011) The neural network of sensory-substitution object shape recognition. Funct Neurol Rehab Ergon 1(2):271

    Google Scholar 

  198. Striem-Amit E, Dakwar O, Reich L, Amedi A (2012b) The large-scale organization of “visual” streams emerges without visual experience. Cereb Cortex 22(7):1698–1709

    Article  Google Scholar 

  199. Striem-Amit E, Guendelman M, Amedi A (2012c) ‘Visual’acuity of the congenitally blind using visual-to-auditory sensory substitution. PLoS ONE 7(3):e33136

    Article  Google Scholar 

  200. Striem-Amit E, Ovadia-Caro S, Caramazza A, Margulies DS, Villringer A, Amedi A (2015) Functional connectivity of visual cortex in the blind follows retinotopic organization principles. Brain 138(6):1679–1695

    Article  Google Scholar 

  201. Sánchez J, Lumbreras M (1999) Virtual environment interaction through 3D audio by blind children. CyberPsychology Behav 2(2):101–111

    Article  Google Scholar 

  202. Sánchez J, de la Torre N (2010) Autonomous navigation through the city for the blind. In: Proceedings of the 12th international ACM SIGACCESS conference on computers and accessibility (ASSETS’10). ACM Press, New York, p 195

    Google Scholar 

  203. Tan HM, Bassett JP, O’Keefe J, Cacucci F, Wills TJ (2015) The development of the head direction system before eye opening in the rat. Curr Biol 25(4):479–483

    Article  Google Scholar 

  204. Tanaka K (1997) Mechanisms of visual object recognition: monkey and human studies. Curr Opin Neurobiol 7(4):523–529

    Article  Google Scholar 

  205. Taube JS (2007) The head direction signal: origins and sensory-motor integration. Annu Rev Neurosci 30:181–207

    Article  MathSciNet  Google Scholar 

  206. Taube JS, Muller RU, Ranck JB (1990) Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J Neurosci 10(2):436–447

    Google Scholar 

  207. Tcheang L, Bülthoff HH, Burgess N (2011) Visual influence on path integration in darkness indicates a multimodal representation of large-scale space. Proc Natl Acad Sci 108(3):1152–1157

    Article  Google Scholar 

  208. Tinti C, Adenzato M, Tamietto M, Cornoldi C (2006) Visual experience is not necessary for efficient survey spatial cognition: evidence from blindness. Q J Exp Psychol 59(7):1306–1328

    Article  Google Scholar 

  209. Tyler CW (2005) Varieties of synesthetic experience. In: Robertson LC, Sagiv N (eds)

    Google Scholar 

  210. Ungar S, Blades M, Spencer C (1993) The role of tactile maps in mobility training. Brit J Vis Impair 11(2):59–61

    Article  Google Scholar 

  211. Ungar S, Blades M, Spencer C, Morsley K (1996) The ability of visually impaired children to locate themselves on a tactile map. J Vis Impair Blindness 90:526–535

    Google Scholar 

  212. Ungar S (2000) Cognitive mapping without vision. Cogn Map Past Present Future 4:221

    Google Scholar 

  213. Vercillo T, Burr D, Gori M (2016) Early visual deprivation severely compromises the auditory sense of space in congenitally blind children. Dev Psychol 52(6):847

    Article  Google Scholar 

  214. Viard A, Doeller CF, Hartley T, Bird CM, Burgess N (2011) Anterior hippocampus and goal-directed spatial decision making. J Neurosci 31(12):4613–4621

    Article  Google Scholar 

  215. Visell Y (2009) Tactile sensory substitution: Models for enaction in HCI. Interact Comput 21(1–2):38–53

    Article  Google Scholar 

  216. Voss P, Lassonde M, Gougoux F, Fortin M, Guillemot JP, Lepore F (2004) Early-and late-onset blind individuals show supra-normal auditory abilities in far-space. Curr Biol 14(19):1734–1738

    Article  Google Scholar 

  217. Voss P, Tabry V, Zatorre RJ (2015) Trade-off in the sound localization abilities of early blind individuals between the horizontal and vertical planes. J Neurosci 35(15):6051–6056

    Article  Google Scholar 

  218. Voss P, Zatorre RJ (2011) Occipital cortical thickness predicts performance on pitch and musical tasks in blind individuals. Cereb Cortex bhr311

    Google Scholar 

  219. Vuillerme N, Hlavackova P, Franco C, Diot B, Demongeot J, Payan Y (2011) Can an electro-tactile vestibular substitution system improve balance in patients with unilateral vestibular loss under altered somatosensory conditions from the foot and ankle?. In: 2011 annual international conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp 1323–1326

    Google Scholar 

  220. Ward J, Meijer P (2010) Visual experiences in the blind induced by an auditory sensory substitution device. Conscious Cogn 19(1):492–500

    Article  Google Scholar 

  221. Ward J, Wright T (2014) Sensory substitution as an artificially acquired synaesthesia. Neurosci Biobehav Rev 41:26–35

    Article  Google Scholar 

  222. Whishaw IQ, Mittleman G, Bunch ST, Dunnett SB (1987) Impairments in the acquisition, retention and selection of spatial navigation strategies after medial caudate-putamen lesions in rats. Behav Brain Res 24(2):125–138

    Article  Google Scholar 

  223. White NM, McDonald RJ (2002) Multiple parallel memory systems in the brain of the rat. Neurobiol Learn Mem 77(2):125–184

    Article  Google Scholar 

  224. White BW, Saunders FA, Scadden L, Bach-Y-Rita P, Collins CC (1970) Seeing with the skin. Percept Psychophys 7(1):23–27

    Article  Google Scholar 

  225. Wiener, S. I., & Taube, J. S. (2005). Head direction cells and the neural mechanisms of spatial orientation (bradford books). The MIT Press

    Google Scholar 

  226. Wolbers T, Klatzky RL, Loomis JM, Wutte MG, Giudice NA (2011) Modality-independent coding of spatial layout in the human brain. Curr Biol 21(11):984–989

    Article  Google Scholar 

  227. Wolbers T, Wiener JM, Mallot HA, Büchel C (2007) Differential recruitment of the hippocampus, medial prefrontal cortex, and the human motion complex during path integration in humans. J Neurosci 27(35):9408–9416

    Article  Google Scholar 

  228. Wolbers T, Hegarty M (2010) What determines our navigational abilities? Trends Cogn Sci 14:138–146

    Google Scholar 

  229. Zamm A, Schlaug G, Eagleman DM, Loui P (2013) Pathways to seeing music: Enhanced structural connectivity in colored-music synesthesia. NeuroImage 74:359–366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel-Robert Chebat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Chebat, DR., Harrar, V., Kupers, R., Maidenbaum, S., Amedi, A., Ptito, M. (2018). Sensory Substitution and the Neural Correlates of Navigation in Blindness. In: Pissaloux, E., Velazquez, R. (eds) Mobility of Visually Impaired People. Springer, Cham. https://doi.org/10.1007/978-3-319-54446-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54446-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54444-1

  • Online ISBN: 978-3-319-54446-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics