Skip to main content

Intrahepatic and Hilar Cholangiocarcinomas: Epidemiology, Basic Principles of Treatment, and Clinical Data

  • Chapter
  • First Online:
Radiation Therapy for Liver Tumors
  • 1092 Accesses

Abstract

Cholangiocarcinoma, or cancer arising from bile duct epithelium, represents about 10–25% of primary liver cancers worldwide. Intrahepatic cholangiocarcinoma occurs in the bile ducts within the hepatic parenchyma, while extrahepatic tumors occur from the junction of the hepatic ducts to the common bile duct. Hilar cholangiocarcinoma is a subset of extrahepatic disease occurring at or near the junction of the left and right hepatic ducts. Chronic inflammation of the biliary tree from such processes such as liver fluke infection and primary sclerosing cholangitis confers a higher risk of developing cholangiocarcinoma. Diagnosis generally requires multiple modalities including laboratory tests, imaging studies, and often endoscopic procedures and biopsy. Cholangiocarcinoma is now staged according to subtype, with unique systems specific to intrahepatic, hilar, and extrahepatic diseases. As the only confirmed curative intervention for the treatment of cholangiocarcinoma, surgical intervention in the form of resection or liver transplant should be considered in all patients with localized disease. Locoregional therapies may provide some benefit to patients with localized disease who are not surgical candidates. Patients with metastatic cholangiocarcinoma may benefit from combination chemotherapy with gemcitabine and cisplatin, though prognosis remains poor. This chapter reviews the epidemiology, risk factors, and pathogenesis of intrahepatic and hilar cholangiocarcinomas, as well as the basic principles of diagnosis, staging, and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nakeeb A, Pitt HA, Sohn TA, Coleman J, Abrams RA, Piantadosi S, et al. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann surg. 1996;224(4):463–73; discussion 73–5. PubMed PMID: 8857851. Pubmed Central PMCID: 1235406.

    Google Scholar 

  2. DeOliveira ML, Cunningham SC, Cameron JL, Kamangar F, Winter JM, Lillemoe KD, et al. Cholangiocarcinoma: Thirty-one-year experience with 564 patients at a single institution. Ann surg. 2007 245(5):755–62. PubMed PMID: 17457168. Pubmed Central PMCID: 1877058.

    Google Scholar 

  3. Mosadeghi S, Liu B, Bhuket T, Wong RJ. Sex-specific and race/ethnicity-specific disparities in cholangiocarcinoma incidence and prevalence in the U.S.: An updated analysis of the 2000–2011 surveillance, epidemiology, and end results registry. Hepatology research: The official journal of the Japan Society of Hepatology. 2015 Oct 28. PubMed PMID: 26508039.

    Google Scholar 

  4. Shaib YH, Davila JA, McGlynn K, El-Serag HB. Rising incidence of intrahepatic cholangiocarcinoma in the United States: A true increase? J Hepatol. 2004;40(3):472–7 PubMed PMID: 15123362.

    Article  PubMed  Google Scholar 

  5. Welzel TM, McGlynn KA, Hsing AW, O’Brien TR, Pfeiffer RM. Impact of classification of hilar cholangiocarcinomas (Klatskin tumors) on the incidence of intra and extrahepatic cholangiocarcinoma in the United States. J Natl Cancer Inst. 2006;98(12):873–5 PubMed PMID: 16788161.

    Article  PubMed  Google Scholar 

  6. Khan SA, Emadossadaty S, Ladep NG, Thomas HC, Elliott P, Taylor-Robinson SD, et al. Rising trends in cholangiocarcinoma: Is the ICD classification system misleading us? J Hepatol. 2012;56(4):848–54 PubMed PMID: 22173164.

    Article  PubMed  Google Scholar 

  7. Sripa B, Pairojkul C. Cholangiocarcinoma: lessons from Thailand. Curr Opin Gastroenterol. 2008;24(3):349–56. PubMed PMID: 18408464. Pubmed Central PMCID: 4130346.

    Google Scholar 

  8. Alvaro D, Crocetti E, Ferretti S, Bragazzi MC, Capocaccia R, committee AC. Descriptive epidemiology of cholangiocarcinoma in Italy. Digestive and liver disease: Official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2010;42(7):490–5. PubMed PMID: 20022823.

    Google Scholar 

  9. von Hahn T, Ciesek S, Wegener G, Plentz RR, Weismuller TJ, Wedemeyer H, et al. Epidemiological trends in incidence and mortality of hepatobiliary cancers in Germany. Scand J Gastroenterol. 2011;46(9):1092–8 PubMed PMID: 21692710.

    Article  Google Scholar 

  10. Utada M, Ohno Y, Tamaki T, Sobue T, Endo G. Long-term trends in incidence and mortality of intrahepatic and extrahepatic bile duct cancer in Japan. J Epidemiol/Jpn Epidemiol Assoc. 2014;24(3):193–9. PubMed PMID: 24614916. Pubmed Central PMCID: 4000766.

    Google Scholar 

  11. Sithithaworn P, Yongvanit P, Duenngai K, Kiatsopit N, Pairojkul C. Roles of liver fluke infection as risk factor for cholangiocarcinoma. J Hepato-Biliary-Pancreat Sci. 2014;21(5):301–8 PubMed PMID: 24408775.

    Article  Google Scholar 

  12. Khuntikeo N, Loilome W, Thinkhamrop B, Chamadol N, Yongvanit P. A comprehensive public health conceptual framework and strategy to effectively combat cholangiocarcinoma in Thailand. PLoS Negl Trop Dis. 2016 Jan;10(1):e0004293. PubMed PMID: 26797527. Pubmed Central PMCID: 4721916.

    Google Scholar 

  13. Chapman R, Fevery J, Kalloo A, Nagorney DM, Boberg KM, Shneider B, et al. Diagnosis and management of primary sclerosing cholangitis. Hepatology. 2010;51(2):660–78 PubMed PMID: 20101749.

    Article  CAS  PubMed  Google Scholar 

  14. Folseraas T, Boberg KM. Cancer risk and surveillance in primary sclerosing cholangitis. Clin Liver Dis. 2016;20(1):79–98 PubMed PMID: 26593292.

    Article  PubMed  Google Scholar 

  15. Soreide K, Korner H, Havnen J, Soreide JA. Bile duct cysts in adults. Br J Surg. 2004;91(12):1538–48 PubMed PMID: 15549778.

    Article  CAS  PubMed  Google Scholar 

  16. Soares KC, Kim Y, Spolverato G, Maithel S, Bauer TW, Marques H, et al. Presentation and clinical outcomes of choledochal cysts in children and adults: A multi-institutional analysis. JAMA Surg. 2015;150(6):577–84 PubMed PMID: 25923827.

    Article  PubMed  Google Scholar 

  17. Tazuma S. Gallstone disease: Epidemiology, pathogenesis, and classification of biliary stones (common bile duct and intrahepatic). Best Pract Res Clin Gastroenterol. 2006;20(6):1075–83 PubMed PMID: 17127189.

    Article  PubMed  Google Scholar 

  18. Chijiiwa K, Ichimiya H, Kuroki S, Koga A, Nakayama F. Late development of cholangiocarcinoma after the treatment of hepatolithiasis. Surg, Gynecol Obstet. 1993;177(3):279–82 PubMed PMID: 8395085.

    CAS  Google Scholar 

  19. Li M, Li J, Li P, Li H, Su T, Zhu R, et al. Hepatitis B virus infection increases the risk of cholangiocarcinoma: a meta-analysis and systematic review. J Gastroenterol Hepatol. 2012;27(10):1561–8 PubMed PMID: 22694354.

    Article  PubMed  Google Scholar 

  20. Palmer WC, Patel T. Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. J Hepatol. 2012 Jul;57(1):69–76. PubMed PMID: 22420979. Pubmed Central PMCID: 3804834.

    Google Scholar 

  21. Zhou Y, Zhao Y, Li B, Huang J, Wu L, Xu D, et al. Hepatitis viruses infection and risk of intrahepatic cholangiocarcinoma: evidence from a meta-analysis. BMC Cancer. 2012;12:289. PubMed PMID: 22799744. Pubmed Central PMCID: 3411483.

    Google Scholar 

  22. Li H, Hu B, Zhou ZQ, Guan J, Zhang ZY, Zhou GW. Hepatitis C virus infection and the risk of intrahepatic cholangiocarcinoma and extrahepatic cholangiocarcinoma: Evidence from a systematic review and meta-analysis of 16 case-control studies. World J Surg Oncol. 2015;13:161. PubMed PMID: 25903488. Pubmed Central PMCID: 4419416.

    Google Scholar 

  23. Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet. 2014 Jun 21;383(9935):2168–79. PubMed PMID: 24581682. Pubmed Central PMCID: 4069226.

    Google Scholar 

  24. Mecklin JP, Jarvinen HJ, Virolainen M. The association between cholangiocarcinoma and hereditary nonpolyposis colorectal carcinoma. Cancer. 1992;69(5):1112–4 PubMed PMID: 1310886.

    Article  CAS  PubMed  Google Scholar 

  25. Pilarski R, Cebulla CM, Massengill JB, Rai K, Rich T, Strong L, et al. Expanding the clinical phenotype of hereditary BAP1 cancer predisposition syndrome, reporting three new cases. Genes, Chromosom, Cancer. 2014 Feb;53(2):177–82. PubMed PMID: 24243779. Pubmed Central PMCID: 4041196.

    Google Scholar 

  26. Brandi G, Venturi M, Pantaleo MA, Ercolani G, Gico. Cholangiocarcinoma: Current opinion on clinical practice diagnostic and therapeutic algorithms: A review of the literature and a long-standing experience of a referral center. Digestive and liver disease: Official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2016 Mar;48(3):231–41. PubMed PMID: 26769568.

    Google Scholar 

  27. Kim HJ, Kim MH, Myung SJ, Lim BC, Park ET, Yoo KS, et al. A new strategy for the application of CA19-9 in the differentiation of pancreaticobiliary cancer: Analysis using a receiver operating characteristic curve. Am J Gastroenterol. 1999;94(7):1941–6 PubMed PMID: 10406263.

    Article  CAS  PubMed  Google Scholar 

  28. Narimatsu H, Iwasaki H, Nakayama F, Ikehara Y, Kudo T, Nishihara S, et al. Lewis and secretor gene dosages affect CA19-9 and DU-PAN-2 serum levels in normal individuals and colorectal cancer patients. Can Res. 1998;58(3):512–8 PubMed PMID: 9458099.

    CAS  Google Scholar 

  29. Pattanapairoj S, Silsirivanit A, Muisuk K, Seubwai W, Cha’on U, Vaeteewoottacharn K, et al. Improve discrimination power of serum markers for diagnosis of cholangiocarcinoma using data mining-based approach. Clin Biochem. 2015;48(10–11):668–73 PubMed PMID: 25863112.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang L, Tan H, Panje CM, Yu H, Xiu Y, Shi H. Role of 18F-FDG PET/CT Imaging in Intrahepatic Cholangiocarcinoma. Clin Nucl Med. 2016;41(1):1–7 PubMed PMID: 26402131.

    Article  PubMed  Google Scholar 

  31. Vogl TJ, Schwarz WO, Heller M, Herzog C, Zangos S, Hintze RE, et al. Staging of Klatskin tumours (hilar cholangiocarcinomas): comparison of MR cholangiography, MR imaging, and endoscopic retrograde cholangiography. Eur Radiol. 2006;16(10):2317–25 PubMed PMID: 16622690.

    Article  PubMed  Google Scholar 

  32. Huang B, Wu L, Lu XY, Xu F, Liu CF, Shen WF, et al. Small intrahepatic cholangiocarcinoma and hepatocellular carcinoma in cirrhotic livers may share similar enhancement patterns at multiphase dynamic MR imaging. Radiology. 2016;14:151205 PubMed PMID: 27077381.

    Google Scholar 

  33. Joo I, Lee JM, Lee SM, Lee JS, Park JY, Han JK. Diagnostic accuracy of liver imaging reporting and data system (LI-RADS) v2014 for intrahepatic mass-forming cholangiocarcinomas in patients with chronic liver disease on gadoxetic acid-enhanced MRI. J Magn Reson imaging: JMRI. 2016 Apr 18. PubMed PMID: 27087012.

    Google Scholar 

  34. Zen Y, Kawakami H, Kim JH. IgG4-related sclerosing cholangitis: All we need to know. J Gastroenterol. 2016;51(4):295–312 PubMed PMID: 26817943.

    Article  CAS  PubMed  Google Scholar 

  35. Du S, Liu G, Cheng X, Li Y, Wang Q, Li J, et al. Differential diagnosis of immunoglobulin G4-associated cholangitis from cholangiocarcinoma. J Clin Gastroent. 2016 Mar 11. PubMed PMID: 26974756.

    Google Scholar 

  36. De Bellis M, Sherman S, Fogel EL, Cramer H, Chappo J, McHenry L Jr, et al. Tissue sampling at ERCP in suspected malignant biliary strictures (Part 1). Gastrointest Endosc. 2002;56(4):552–61 PubMed PMID: 12297773.

    Article  PubMed  Google Scholar 

  37. Wani S, Shah RJ. Probe-based confocal laser endomicroscopy for the diagnosis of indeterminate biliary strictures. Curr Opin Gastroenterol. 2013;29(3):319–23 PubMed PMID: 23507916.

    Article  PubMed  Google Scholar 

  38. Slivka A, Gan I, Jamidar P, Costamagna G, Cesaro P, Giovannini M, et al. Validation of the diagnostic accuracy of probe-based confocal laser endomicroscopy for the characterization of indeterminate biliary strictures: results of a prospective multicenter international study. Gastrointest Endosc. 2015;81(2):282–90 PubMed PMID: 25616752.

    Article  PubMed  Google Scholar 

  39. Heimbach JK, Sanchez W, Rosen CB, Gores GJ. Trans-peritoneal fine needle aspiration biopsy of hilar cholangiocarcinoma is associated with disease dissemination. HPB: The official journal of the International Hepato Pancreato Biliary Association. 2011 May;13(5):356–60. PubMed PMID: 21492336. Pubmed Central PMCID: 3093648.

    Google Scholar 

  40. Sakata J, Shirai Y, Wakai T, Nomura T, Sakata E, Hatakeyama K. Catheter tract implantation metastases associated with percutaneous biliary drainage for extrahepatic cholangiocarcinoma. World J Gastroenterol. 2005 Nov 28;11(44):7024–7. PubMed PMID: 16437610. Pubmed Central PMCID: 4717048.

    Google Scholar 

  41. Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 2013 Dec;145(6):1215–29. PubMed PMID: 24140396. Pubmed Central PMCID: 3862291.

    Google Scholar 

  42. Barr Fritcher EG, Kipp BR, Halling KC, Clayton AC. Fishing for pancreatobiliary tract malignancy in endoscopic brushings enhances the sensitivity of routine cytology. Cytopathology: official journal of the British Society for Clinical Cytology. 2014 Jul 30. PubMed PMID: 25073411.

    Google Scholar 

  43. Gonda TA, Glick MP, Sethi A, Poneros JM, Palmas W, Iqbal S, et al. Polysomy and p16 deletion by fluorescence in situ hybridization in the diagnosis of indeterminate biliary strictures. Gastrointest Endosc. 2012;75(1):74–9 PubMed PMID: 22100297.

    Article  PubMed  Google Scholar 

  44. Thanan R, Techasen A, Hou B, Jamnongkan W, Armartmuntree N, Yongvanit P, et al. Development and characterization of a hydrogen peroxide-resistant cholangiocyte cell line: A novel model of oxidative stress-related cholangiocarcinoma genesis. Biochem Biophys Res Commun. 2015;464(1):182–8 PubMed PMID: 26100205.

    Article  CAS  PubMed  Google Scholar 

  45. Jusakul A, Loilome W, Namwat N, Techasen A, Kuver R, Ioannou GN, et al. Anti-apoptotic phenotypes of cholestan-3β,5α,6β-triol-resistant human cholangiocytes: Characteristics contributing to the genesis of cholangiocarcinoma. J Steroid Biochem Mol Biol. 2013 Nov;138:368–75. PubMed PMID: 23959098. Pubmed Central PMCID: 3825754.

    Google Scholar 

  46. Tamir S, Burney S, Tannenbaum SR. DNA damage by nitric oxide. Chem Res Toxicol. 1996 Jul-Aug;9(5):821–7. PubMed PMID: 8828916.

    Google Scholar 

  47. Han C, Wu T. Cyclooxygenase-2-derived prostaglandin E2 promotes human cholangiocarcinoma cell growth and invasion through EP1 receptor-mediated activation of the epidermal growth factor receptor and Akt. J Biol Chem. 2005;280(25):24053–63 PubMed PMID: 15855163.

    Article  CAS  PubMed  Google Scholar 

  48. Fan B, Malato Y, Calvisi DF, Naqvi S, Razumilava N, Ribback S, et al. Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest. 2012 Aug;122(8):2911–5. PubMed PMID: 22797301. Pubmed Central PMCID: 3408746.

    Google Scholar 

  49. Sekiya S, Suzuki A. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J Clin Invest. 2012 Nov;122(11):3914–8. PubMed PMID: 23023701. Pubmed Central PMCID: 3484442.

    Google Scholar 

  50. Guest RV, Boulter L, Kendall TJ, Minnis-Lyons SE, Walker R, Wigmore SJ, et al. Cell lineage tracing reveals a biliary origin of intrahepatic cholangiocarcinoma. Cancer Res. 2014 Feb 15;74(4):1005–10. PubMed PMID: 24310400. Pubmed Central PMCID: 3929349.

    Google Scholar 

  51. Churi CR, Shroff R, Wang Y, Rashid A, Kang HC, Weatherly J, et al. Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS One. 2014;9(12):e115383. PubMed PMID: 25536104. Pubmed Central PMCID: 4275227.

    Google Scholar 

  52. Holcombe RF XJ, Pishvaian MJ, et al, editor Tumor profiling of biliary tract carcinomas to reveal distinct molecular alterations and potential therapeutic targets. Gastrointestinal Cancer Symposium; 2015; San Francisco: Journal of Clinical Oncology.

    Google Scholar 

  53. Ross JS WK, Catenacci DVT, et al, editor Comprehensive genomic profiling of biliary tract cancers to reveal tumor-specific differences and genomic alterations. Gastrointestinal Cancers Symposium; 2015; San Francisco, CA: Journal of Clinical Oncology.

    Google Scholar 

  54. Gu TL, Deng X, Huang F, Tucker M, Crosby K, Rimkunas V, et al. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma. PLoS One. 2011;6(1):e15640. PubMed PMID: 21253578. Pubmed Central PMCID: 3017127.

    Google Scholar 

  55. Okabayashi T, Yamamoto J, Kosuge T, Shimada K, Yamasaki S, Takayama T, et al. A new staging system for mass-forming intrahepatic cholangiocarcinoma: Analysis of preoperative and postoperative variables. Cancer. 2001;92(9):2374–83 PubMed PMID: 11745293.

    Article  CAS  PubMed  Google Scholar 

  56. Yamasaki S. Intrahepatic cholangiocarcinoma: macroscopic type and stage classification. J Hepato-Biliary-Pancreat Surg. 2003;10(4):288–91 PubMed PMID: 14598147.

    Article  Google Scholar 

  57. Nathan H, Aloia TA, Vauthey JN, Abdalla EK, Zhu AX, Schulick RD, et al. A proposed staging system for intrahepatic cholangiocarcinoma. Ann Surg Oncol. 2009;16(1):14–22 PubMed PMID: 18987916.

    Article  PubMed  Google Scholar 

  58. American Joint Committee on Cancer: AJCC Cancer Staging Maual. Edge S, editor. New York: Springer; 2009.

    Google Scholar 

  59. Bartella I, Dufour JF. Clinical Diagnosis and Staging of Intrahepatic Cholangiocarcinoma. J Gastrointest Liver Dis: JGLD. 2015;24(4):481–9 PubMed PMID: 26697575.

    Google Scholar 

  60. Farges O, Fuks D, Le Treut YP, Azoulay D, Laurent A, Bachellier P, et al. AJCC 7th edition of TNM staging accurately discriminates outcomes of patients with resectable intrahepatic cholangiocarcinoma: By the AFC-IHCC-2009 study group. Cancer. 2011;117(10):2170–7 PubMed PMID: 21523730.

    Article  PubMed  Google Scholar 

  61. Bismuth H, Corlette MB. Intrahepatic cholangioenteric anastomosis in carcinoma of the hilus of the liver. Surg Gynecol Obstet. 1975;140(2):170–8 PubMed PMID: 1079096.

    CAS  PubMed  Google Scholar 

  62. Jarnagin WR, Fong Y, DeMatteo RP, Gonen M, Burke EC, Bodniewicz BJ, et al. Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma. Ann Surg. 2001 Oct;234(4):507–17; discussion 17-9. PubMed PMID: 11573044. Pubmed Central PMCID: 1422074.

    Google Scholar 

  63. Zervos EE, Osborne D, Goldin SB, Villadolid DV, Thometz DP, Durkin A, et al. Stage does not predict survival after resection of hilar cholangiocarcinomas promoting an aggressive operative approach. Am J Surg. 2005;190(5):810–5 PubMed PMID: 16226963.

    Article  PubMed  Google Scholar 

  64. Deoliveira ML, Schulick RD, Nimura Y, Rosen C, Gores G, Neuhaus P, et al. New staging system and a registry for perihilar cholangiocarcinoma. Hepatology. 2011;53(4):1363–71 PubMed PMID: 21480336.

    Article  PubMed  Google Scholar 

  65. Sotiropoulos GC, Bockhorn M, Sgourakis G, Brokalaki EI, Molmenti EP, Neuhauser M, et al. R0 liver resections for primary malignant liver tumors in the noncirrhotic liver: a diagnosis-related analysis. Dig Dis Sci. 2009;54(4):887–94 PubMed PMID: 18712480.

    Article  PubMed  Google Scholar 

  66. Endo I, Gonen M, Yopp AC, Dalal KM, Zhou Q, Klimstra D, et al. Intrahepatic cholangiocarcinoma: Rising frequency, improved survival, and determinants of outcome after resection. Ann Surg. 2008;248(1):84–96 PubMed PMID: 18580211.

    Article  PubMed  Google Scholar 

  67. Choi SB, Kim KS, Choi JY, Park SW, Choi JS, Lee WJ, et al. The prognosis and survival outcome of intrahepatic cholangiocarcinoma following surgical resection: Association of lymph node metastasis and lymph node dissection with survival. Ann Surg Oncol. 2009;16(11):3048–56 PubMed PMID: 19626372.

    Article  PubMed  Google Scholar 

  68. Yamamoto M, Takasaki K, Otsubo T, Katsuragawa H, Katagiri S. Recurrence after surgical resection of intrahepatic cholangiocarcinoma. J Hepato-Biliary-Pancreatic Surg. 2001;8(2):154–7 PubMed PMID: 11455472.

    Article  CAS  Google Scholar 

  69. Uenishi T, Kubo S, Yamazaki O, Yamada T, Sasaki Y, Nagano H, et al. Indications for surgical treatment of intrahepatic cholangiocarcinoma with lymph node metastases. J Hepato-Biliary-Pancreatic Surg. 2008;15(4):417–22 PubMed PMID: 18670844.

    Article  Google Scholar 

  70. Paik KY, Jung JC, Heo JS, Choi SH, Choi DW, Kim YI. What prognostic factors are important for resected intrahepatic cholangiocarcinoma? J Gastroenterol Hepatol. 2008;23(5):766–70 PubMed PMID: 17868336.

    Article  PubMed  Google Scholar 

  71. Ohtsuka M, Ito H, Kimura F, Shimizu H, Togawa A, Yoshidome H, et al. Results of surgical treatment for intrahepatic cholangiocarcinoma and clinicopathological factors influencing survival. Br J Surg. 2002;89(12):1525–31 PubMed PMID: 12445060.

    Article  CAS  PubMed  Google Scholar 

  72. Nuzzo G, Giuliante F, Ardito F, Giovannini I, Aldrighetti L, Belli G, et al. Improvement in perioperative and long-term outcome after surgical treatment of hilar cholangiocarcinoma: Results of an Italian multicenter analysis of 440 patients. Arch Surg. 2012;147(1):26–34 PubMed PMID: 22250108.

    Article  PubMed  Google Scholar 

  73. Farges O, Regimbeau JM, Fuks D, Le Treut YP, Cherqui D, Bachellier P, et al. Multicentre European study of preoperative biliary drainage for hilar cholangiocarcinoma. Br J Surg. 2013;100(2):274–83 PubMed PMID: 23124720.

    Article  CAS  PubMed  Google Scholar 

  74. Nagino M, Ebata T, Yokoyama Y, Igami T, Sugawara G, Takahashi Y, et al. Evolution of surgical treatment for perihilar cholangiocarcinoma: a single-center 34-year review of 574 consecutive resections. Ann Surg. 2013;258(1):129–40 PubMed PMID: 23059502.

    Article  PubMed  Google Scholar 

  75. Kang MJ, Jang JY, Chang J, Shin YC, Lee D, Kim HB, et al. Actual Long-Term Survival Outcome of 403 Consecutive Patients with Hilar Cholangiocarcinoma. World J Surg. 2016 May 20. PubMed PMID: 27206402.

    Google Scholar 

  76. Neoptolemos JP, Moore MJ, Cox TF, Valle JW, Palmer DH, McDonald AC, et al. Effect of adjuvant chemotherapy with fluorouracil plus folinic acid or gemcitabine vs observation on survival in patients with resected periampullary adenocarcinoma: the ESPAC-3 periampullary cancer randomized trial. JAMA, J Am Med Assoc. 2012;308(2):147–56 PubMed PMID: 22782416.

    Article  CAS  Google Scholar 

  77. Fu BS, Zhang T, Li H, Yi SH, Wang GS, Xu C, et al. The role of liver transplantation for intrahepatic cholangiocarcinoma: a single-center experience. Eur Surg Res Euro chirurgische Forschung Recherches chirurgicales europeennes. 2011;47(4):218–21 PubMed PMID: 22041581.

    Article  Google Scholar 

  78. Sotiropoulos GC, Kaiser GM, Lang H, Molmenti EP, Beckebaum S, Fouzas I, et al. Liver transplantation as a primary indication for intrahepatic cholangiocarcinoma: A single-center experience. Transpl Proc. 2008;40(9):3194–5 PubMed PMID: 19010231.

    Article  CAS  Google Scholar 

  79. Casavilla FA, Marsh JW, Iwatsuki S, Todo S, Lee RG, Madariaga JR, et al. Hepatic resection and transplantation for peripheral cholangiocarcinoma. J Am Coll Surg. 1997 Nov;185(5):429–36. PubMed PMID: 9358085. Pubmed Central PMCID: 2958518.

    Google Scholar 

  80. Robles R, Figueras J, Turrion VS, Margarit C, Moya A, Varo E, et al. Spanish experience in liver transplantation for hilar and peripheral cholangiocarcinoma. Ann Surg. 2004 Feb;239(2):265–71. PubMed PMID: 14745336. Pubmed Central PMCID: 1356221.

    Google Scholar 

  81. Sapisochin G, Rodriguez de Lope C, Gastaca M, Ortiz de Urbina J, Suarez MA, Santoyo J, et al. “Very early” intrahepatic cholangiocarcinoma in cirrhotic patients: should liver transplantation be reconsidered in these patients? Am J Transplant: official J Am Soc Transplant Am Soc Transplant Surg. 2014;14(3):660–7 PubMed PMID: 24410861.

    Article  CAS  Google Scholar 

  82. Rea DJ, Heimbach JK, Rosen CB, Haddock MG, Alberts SR, Kremers WK, et al. Liver transplantation with neoadjuvant chemoradiation is more effective than resection for hilar cholangiocarcinoma. Ann Surg. 2005 Sep;242(3):451–8; discussion 8-61. PubMed PMID: 16135931. Pubmed Central PMCID: 1357753.

    Google Scholar 

  83. Darwish Murad S, Kim WR, Harnois DM, Douglas DD, Burton J, Kulik LM, et al. Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US centers. Gastroenterology. 2012 Jul;143(1):88–98 e3; quiz e14. PubMed PMID: 22504095. Pubmed Central PMCID: 3846443.

    Google Scholar 

  84. Kim JH, Won HJ, Shin YM, Kim KA, Kim PN. Radiofrequency ablation for the treatment of primary intrahepatic cholangiocarcinoma. AJR Am J Roentgenol. 2011;196(2):W205–9 PubMed PMID: 21257864.

    Article  PubMed  Google Scholar 

  85. Kim JH, Won HJ, Shin YM, Kim PN, Lee SG, Hwang S. Radiofrequency ablation for recurrent intrahepatic cholangiocarcinoma after curative resection. Eur J Radiol. 2011;80(3):e221–5 PubMed PMID: 20950977.

    Article  PubMed  Google Scholar 

  86. Chiou YY, Hwang JI, Chou YH, Wang HK, Chiang JH, Chang CY. Percutaneous ultrasound-guided radiofrequency ablation of intrahepatic cholangiocarcinoma. Kaohsiung J Med Sci. 2005;21(7):304–9 PubMed PMID: 16089307.

    Article  PubMed  Google Scholar 

  87. Carrafiello G, Lagana D, Cotta E, Mangini M, Fontana F, Bandiera F, et al. Radiofrequency ablation of intrahepatic cholangiocarcinoma: preliminary experience. Cardiovasc Intervent Radiol. 2010;33(4):835–9 PubMed PMID: 20411389.

    Article  PubMed  Google Scholar 

  88. Haidu M, Dobrozemsky G, Schullian P, Widmann G, Klaus A, Weiss H, et al. Stereotactic radiofrequency ablation of unresectable intrahepatic cholangiocarcinomas: a retrospective study. Cardiovasc Intervent Radiol. 2012;35(5):1074–82 PubMed PMID: 22006031.

    Article  PubMed  Google Scholar 

  89. Giorgio A, Calisti G, G DES, Farella N, A DIS, Amendola F, et al. Radiofrequency ablation for intrahepatic cholangiocarcinoma: retrospective analysis of a single centre experience. Anticancer Res. 2011 Dec;31(12):4575–80. PubMed PMID: 22199333.

    Google Scholar 

  90. Butros SR, Shenoy-Bhangle A, Mueller PR, Arellano RS. Radiofrequency ablation of intrahepatic cholangiocarcinoma: feasability, local tumor control, and long-term outcome. Clin Imaging. 2014 Jul-Aug;38(4):490–4. PubMed PMID: 24637151.

    Google Scholar 

  91. Steel AW, Postgate AJ, Khorsandi S, Nicholls J, Jiao L, Vlavianos P, et al. Endoscopically applied radiofrequency ablation appears to be safe in the treatment of malignant biliary obstruction. Gastrointest Endosc. 2011;73(1):149–53 PubMed PMID: 21184881.

    Article  PubMed  Google Scholar 

  92. Figueroa-Barojas P, Bakhru MR, Habib NA, Ellen K, Millman J, Jamal-Kabani A, et al. Safety and efficacy of radiofrequency ablation in the management of unresectable bile duct and pancreatic cancer: a novel palliation technique. J Oncol. 2013;2013:910897. PubMed PMID: 23690775. Pubmed Central PMCID: 3649248.

    Google Scholar 

  93. Alis H, Sengoz C, Gonenc M, Kalayci MU, Kocatas A. Endobiliary radiofrequency ablation for malignant biliary obstruction. Hepatobiliary Pancreat Dis Int: HBPD INT. 2013;12(4):423–7 PubMed PMID: 23924501.

    Article  PubMed  Google Scholar 

  94. Ortner ME, Caca K, Berr F, Liebetruth J, Mansmann U, Huster D, et al. Successful photodynamic therapy for nonresectable cholangiocarcinoma: a randomized prospective study. Gastroenterology. 2003;125(5):1355–63 PubMed PMID: 14598251.

    Article  PubMed  Google Scholar 

  95. Cheon YK, Lee TY, Lee SM, Yoon JY, Shim CS. Longterm outcome of photodynamic therapy compared with biliary stenting alone in patients with advanced hilar cholangiocarcinoma. HPB: official J Int Hepato Pancreato Biliary Assoc. 2012 Mar;14(3):185–93. PubMed PMID: 22321037. Pubmed Central PMCID: 3371201.

    Google Scholar 

  96. Lee TY, Cheon YK, Shim CS, Cho YD. Photodynamic therapy prolongs metal stent patency in patients with unresectable hilar cholangiocarcinoma. World J Gastroenterol. 2012 Oct 21;18(39):5589–94. PubMed PMID: 23112552. Pubmed Central PMCID: 3482646.

    Google Scholar 

  97. Strand DS, Cosgrove ND, Patrie JT, Cox DG, Bauer TW, Adams RB, et al. ERCP-directed radiofrequency ablation and photodynamic therapy are associated with comparable survival in the treatment of unresectable cholangiocarcinoma. Gastrointest Endosc. 2014;80(5):794–804 PubMed PMID: 24836747.

    Article  PubMed  Google Scholar 

  98. Park SY, Kim JH, Yoon HJ, Lee IS, Yoon HK, Kim KP. Transarterial chemoembolization versus supportive therapy in the palliative treatment of unresectable intrahepatic cholangiocarcinoma. Clin Radiol. 2011;66(4):322–8 PubMed PMID: 21356394.

    Article  PubMed  Google Scholar 

  99. Edwards ARJ. Transarterial therapies for unresectable cholangiocarcinoma: a meta-analysis. J Vasc Interv Radiol. 2012;23:S101.

    Article  Google Scholar 

  100. Vogl TJ, Naguib NN, Nour-Eldin NE, Bechstein WO, Zeuzem S, Trojan J, et al. Transarterial chemoembolization in the treatment of patients with unresectable cholangiocarcinoma: Results and prognostic factors governing treatment success. J Int du cancer. 2012;131(3):733–40 PubMed PMID: 21976289.

    Article  CAS  Google Scholar 

  101. Kiefer MV, Albert M, McNally M, Robertson M, Sun W, Fraker D, et al. Chemoembolization of intrahepatic cholangiocarcinoma with cisplatinum, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol: a 2-center study. Cancer. 2011;117(7):1498–505 PubMed PMID: 21425151.

    Article  CAS  PubMed  Google Scholar 

  102. Kuhlmann JB, Euringer W, Spangenberg HC, Breidert M, Blum HE, Harder J, et al. Treatment of unresectable cholangiocarcinoma: conventional transarterial chemoembolization compared with drug eluting bead-transarterial chemoembolization and systemic chemotherapy. Eur J Gastroenterol Hepatol. 2012;24(4):437–43 PubMed PMID: 22261548.

    CAS  PubMed  Google Scholar 

  103. Hyder O, Marsh JW, Salem R, Petre EN, Kalva S, Liapi E, et al. Intra-arterial therapy for advanced intrahepatic cholangiocarcinoma: a multi-institutional analysis. Ann Surg Oncol. 2013;20(12):3779–86 PubMed PMID: 23846786.

    Article  PubMed  Google Scholar 

  104. Tanaka N, Yamakado K, Nakatsuka A, Fujii A, Matsumura K, Takeda K. Arterial chemoinfusion therapy through an implanted port system for patients with unresectable intrahepatic cholangiocarcinoma–initial experience. Eur J Radiol. 2002;41(1):42–8 PubMed PMID: 11750151.

    Article  PubMed  Google Scholar 

  105. Vogl TJ, Schwarz W, Eichler K, Hochmuth K, Hammerstingl R, Jacob U, et al. Hepatic intraarterial chemotherapy with gemcitabine in patients with unresectable cholangiocarcinomas and liver metastases of pancreatic cancer: a clinical study on maximum tolerable dose and treatment efficacy. J Cancer Res Clin Oncol. 2006;132(11):745–55 PubMed PMID: 16858591.

    Article  CAS  PubMed  Google Scholar 

  106. Shitara K, Ikami I, Munakata M, Muto O, Sakata Y. Hepatic arterial infusion of mitomycin C with degradable starch microspheres for unresectable intrahepatic cholangiocarcinoma. Clin Oncol. 2008;20(3):241–6 PubMed PMID: 18222071.

    Article  CAS  Google Scholar 

  107. Yashima Y, Sato S, Kawai T, Sugimoto T, Sato T, Kanda M, et al. Intraarterial 5-fluorouracil and interferon therapy is safe and effective for nonresectable biliary tract adenocarcinoma. Hep Intl. 2015;9(1):142–8 PubMed PMID: 25788388.

    Article  Google Scholar 

  108. Inaba Y, Arai Y, Yamaura H, Sato Y, Najima M, Aramaki T, et al. Phase I/II study of hepatic arterial infusion chemotherapy with gemcitabine in patients with unresectable intrahepatic cholangiocarcinoma (JIVROSG-0301). Am J Clin Oncol. 2011;34(1):58–62 PubMed PMID: 20177362.

    Article  CAS  PubMed  Google Scholar 

  109. Boehm LM, Jayakrishnan TT, Miura JT, Zacharias AJ, Johnston FM, Turaga KK, et al. Comparative effectiveness of hepatic artery based therapies for unresectable intrahepatic cholangiocarcinoma. J Surg Oncol. 2015;111(2):213–20 PubMed PMID: 25176325.

    Article  PubMed  Google Scholar 

  110. Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. New Engl J Med. 2010;362(14):1273–81 PubMed PMID: 20375404.

    Article  CAS  PubMed  Google Scholar 

  111. Rogers JE, Law L, Nguyen VD, Qiao W, Javle MM, Kaseb A, et al. Second-line systemic treatment for advanced cholangiocarcinoma. J Gastrointest Oncol. 2014 Dec;5(6):408–13. PubMed PMID: 25436118. Pubmed Central PMCID: 4226829.

    Google Scholar 

  112. Saha SK, Parachoniak CA, Ghanta KS, Fitamant J, Ross KN, Najem MS, et al. Mutant IDH inhibits HNF-4alpha to block hepatocyte differentiation and promote biliary cancer. Nature. 2014 Sep 4;513(7516):110–4. PubMed PMID: 25043045. Pubmed Central PMCID: 4499230.

    Google Scholar 

  113. Goyal L, Govindan A, Sheth RA, Nardi V, Blaszkowsky LS, Faris JE, et al. Prognosis and Clinicopathologic Features of Patients With Advanced Stage Isocitrate Dehydrogenase (IDH) Mutant and IDH Wild-Type Intrahepatic Cholangiocarcinoma. Oncologist. 2015 Sep;20(9):1019–27. PubMed PMID: 26245674. Pubmed Central PMCID: 4571807.

    Google Scholar 

  114. Grassian AR, Pagliarini R, Chiang DY. Mutations of isocitrate dehydrogenase 1 and 2 in intrahepatic cholangiocarcinoma. Curr Opin Gastroenterol. 2014;30(3):295–302 PubMed PMID: 24569570.

    Article  CAS  PubMed  Google Scholar 

  115. Borger DR, Tanabe KK, Fan KC, Lopez HU, Fantin VR, Straley KS, et al. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist. 2012;17(1):72–9. PubMed PMID: 22180306. Pubmed Central PMCID: 3267826.

    Google Scholar 

  116. Kipp BR, Voss JS, Kerr SE, Barr Fritcher EG, Graham RP, Zhang L, et al. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. Hum Pathol. 2012;43(10):1552–8 PubMed PMID: 22503487.

    Article  CAS  PubMed  Google Scholar 

  117. Burris H MI, Maher E, et al. The first reported results of AG-120, a first-in-class, potent inhibitor of the IDH1 mutant protein, in a Phase I study of patients with advanced IDH1-mutant solid tumors, including glimoas. Mol Cancer Ther. 2015;14(12, Suppl 2):Abstract PL04–5.

    Google Scholar 

  118. Graham RP, Barr Fritcher EG, Pestova E, Schulz J, Sitailo LA, Vasmatzis G, et al. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Hum Pathol. 2014;45(8):1630–8 PubMed PMID: 24837095.

    Article  CAS  PubMed  Google Scholar 

  119. Arai Y, Totoki Y, Hosoda F, Shirota T, Hama N, Nakamura H, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology. 2014;59(4):1427–34 PubMed PMID: 24122810.

    Article  CAS  PubMed  Google Scholar 

  120. Ross JS, Wang K, Gay L, Al-Rohil R, Rand JV, Jones DM, et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist. 2014 Mar;19(3):235–42. PubMed PMID: 24563076. Pubmed Central PMCID: 3958461.

    Google Scholar 

  121. Sia D, Losic B, Moeini A, Cabellos L, Hao K, Revill K, et al. Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nat Commun. 2015;6:6087 PubMed PMID: 25608663.

    Article  CAS  PubMed  Google Scholar 

  122. Nakamura H, Arai Y, Totoki Y, Shirota T, Elzawahry A, Kato M, et al. Genomic spectra of biliary tract cancer. Nat Genet. 2015;47(9):1003–10 PubMed PMID: 26258846.

    Article  CAS  PubMed  Google Scholar 

  123. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discovery. 2013 Jun;3(6):636–47. PubMed PMID: 23558953. Pubmed Central PMCID: 3694764.

    Google Scholar 

  124. Javle M SR, Zhu A, et al. A phase 2 study of BGJ398 in patients with advanced or metastatic FGFR-altered cholangiocarcinoma who failed or are intolerant to platinum-based chemotherapy. J Clin Oncol. 2016;34(4_suppl):abstr 335.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lindsey Davis MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lindsey Davis, S. (2017). Intrahepatic and Hilar Cholangiocarcinomas: Epidemiology, Basic Principles of Treatment, and Clinical Data. In: Meyer, J., Schefter, T. (eds) Radiation Therapy for Liver Tumors. Springer, Cham. https://doi.org/10.1007/978-3-319-54531-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54531-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54530-1

  • Online ISBN: 978-3-319-54531-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics