Skip to main content

Model Predictive Control for Trajectory Tracking of Unmanned Aerial Vehicles Using Robot Operating System

  • Chapter
  • First Online:
Robot Operating System (ROS)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 707))

Abstract

In this chapter, strategies for Model Predictive Control (MPC) design and implementation for Unmaned Aerial Vehicles (UAVs) are discussed. This chapter is divided into two main sections. In the first section, modelling, controller design and implementation of MPC for multi-rotor systems is presented. In the second section, we show modelling and controller design techniques for fixed-wing UAVs. System identification techniques are used to derive an estimate of the system model, while state of the art solvers are employed to solve the optimization problem online. By the end of this chapter, the reader should be able to implement an MPC to achieve trajectory tracking for both multi-rotor systems and fixed-wing UAVs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Px4 autopilot. https://pixhawk.org.

  2. Navio autopilot. https://emlid.com.

  3. Robot operating system. http://www.ros.org.

  4. Mayne, D.Q., J.B. Rawlings, C.V. Rao, and P.O. Scokaert. 2000. Constrained model predictive control: Stability and optimality. Automatica 36 (6): 789–814.

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, S., and L. Vandenberghe. 2004. Convex Optimization. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  6. Borrelli, F., A. Bemporard, and M. Morari. 2015. Predictive Control for Linear and Hybrid Systems. Cambridge: Cambridge University Press.

    Google Scholar 

  7. Ferreau, H., C. Kirches, A. Potschka, H. Bock, and M. Diehl. 2014. qpOASES: A parametric active-set algorithm for quadratic programming. Mathematical Programming Computation 6 (4): 327–363.

    Article  MathSciNet  MATH  Google Scholar 

  8. Alexis, K., C. Papachristos, R. Siegwart, and A. Tzes. 2015. Robust model predictive flight control of unmanned rotorcraft. Journal of Intelligent & Robotic Systems 1–27.

    Google Scholar 

  9. Loefberg, J. 2003. Minimax approaches to robust model predictive control. Ph.D. dissertation Linkoping, Sweden: Linkoping University.

    Google Scholar 

  10. Cannon, M., S. Li, Q. Cheng, and B. Kouvaritakis. 2011. Efficient robust output feedback mpc. In Proceedings of the 18th IFAC World Congress, vol. 18, 7957–7962.

    Google Scholar 

  11. Kvasnica, M. 2009. Real-Time Model Predictive Control via Multi-Parametric Programming: Theory and Tools. Saarbrücken: VDM Verlag.

    Google Scholar 

  12. Mattingley, J., and S. Boyd. 2012. Cvxgen: A code generator for embedded convex optimization. Optimization and Engineering 13 (1): 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ljung, L. 1999. System identification - Theory for the User. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  14. Lynen, S., M.W. Achtelik, S. Weiss, M. Chli, and R. Siegwart. 2013. A robust and modular multi-sensor fusion approach applied to mav navigation. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3923–3929. IEEE.

    Google Scholar 

  15. vicon systems. http://www.vicon.com.

  16. Houska, B., H. Ferreau, M. Vukov, and R. Quirynen. 2009–2013. ACADO Toolkit User’s Manual. http://www.acadotoolkit.org.

  17. Morelli, E.A. 2003. Low-order equivalent system identification for the tu-144ll supersonic transport aircraft. Journal of guidance, control, and dynamics 26 (2): 354–362.

    Article  Google Scholar 

  18. Luo, Y., H. Chao, L. Di, and Y. Chen. 2011. Lateral directional fractional order (pi) \(\pi \) control of a small fixed-wing unmanned aerial vehicles: controller designs and flight tests. Control Theory & Applications, IET 5 (18): 2156–2167.

    Article  MathSciNet  Google Scholar 

  19. Beard, R.W., and T.W. McLain. 2013. Implementing dubins airplane paths on fixed-wing uavs. In Contributed Chapter to the Springer Handbook for Unmanned Aerial Vehicles.

    Google Scholar 

  20. Stastny, T., A. Dash, and R. Siegwart. 2017. Nonlinear mpc for fixed-wing uav trajectory tracking: Implementation and flight experiments. In AIAA Guidance, Navigation, and Control (GNC) Conference.

    Google Scholar 

  21. MAVROS. 2016. http://wiki.ros.org/mavros.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Kamel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kamel, M., Stastny, T., Alexis, K., Siegwart, R. (2017). Model Predictive Control for Trajectory Tracking of Unmanned Aerial Vehicles Using Robot Operating System. In: Koubaa, A. (eds) Robot Operating System (ROS). Studies in Computational Intelligence, vol 707. Springer, Cham. https://doi.org/10.1007/978-3-319-54927-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54927-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54926-2

  • Online ISBN: 978-3-319-54927-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics