Skip to main content

Introduction and Literature Review

  • Chapter
  • First Online:
Piezoresistive Effect of p-Type Single Crystalline 3C-SiC

Part of the book series: Springer Theses ((Springer Theses))

  • 530 Accesses

Abstract

The piezoresistance is defined as the change in electrical resistance of a material under external mechanical strain or stress, which was discovered by Smith in 1954 (Barlian et al., Proc IEEE, 97(3):513–552, 2009, [1]). Since then, a great number of research works have been relentlessly carried out to elucidate the phenomenon in numerous materials. Besides fundamental investigation, applications of the piezoresistive effect in semiconductors can be found in numerous Micro Electro Mechanical Systems (MEMS) sensors, thanks to its superior properties, including device miniaturization, simple readout circuit, and low power consumption (Eaton and Smith, Smart Mater Struct, 6:530–539, 1997, [2]; Kumar and Pant, Microsyst Technol, 20(7):1213–1247, 2014, [3]), compared to other sensing technologies (e.g. electrostatic, piezoelectric and optical).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.A. Barlian, W.T. Park, J.R. Mallon Jr., A.J. Rastegar, B.L. Pruitt, Review: semiconductor piezoresistance for microsystems. Proc. IEEE 97(3), 513–552 (2009)

    Article  Google Scholar 

  2. W.P. Eaton, J.H. Smith, Micromachined pressure sensors: review and recent developments. Smart Mater. Struct. 6, 530–539 (1997)

    Article  Google Scholar 

  3. S.S. Kumar, B.D. Pant, Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: a focused review. Microsyst. Technol. 20(7), 1213–1247 (2014)

    Article  Google Scholar 

  4. M. Elwenspoek, H.V. Jansen, Silicon Micromachining (Cambridge University Press, London, 2004)

    Google Scholar 

  5. D.V. Dao, K. Nakamura, T.T. Bui, S. Sugiyama, Micro/nano-mechanical sensors and actuators based on SOI-MEMS technology. Adv. Nat. Sci: Nanosci. Nanotechnol. 1(1), 013001 (2010)

    Google Scholar 

  6. S.M. Spearing, Materials issues in microelectromechanical systems (MEMS). Acta Materialia 48(1), 179–196 (2000)

    Article  Google Scholar 

  7. D.V. Dao, T. Toriyama, J. Wells, S. Sugiyama, Six-degree of freedom micro force-moment sensor for application in geophysics, in 2002 IEEE 15th International Conference on Micro Electro Mechanical Systems (MEMS) (Las Vegas, USA, 2002), pp. 312–315

    Google Scholar 

  8. H. Yousef, M. Boukallel, K. Althoefer, Tactile sensing for dexterous in-hand manipulation in robotics-a review. Sens. Actuators A-Phys. 167(2), 171–187 (2011)

    Article  Google Scholar 

  9. M.-D. Nguyen, H.-P. Phan, K. Matsumoto, I. Shimoyama, A sensitive liquid-cantilever diaphragm for pressure sensor, in 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS) (2013), pp. 617–620

    Google Scholar 

  10. N.C. Tsai, C.Y. Sue, Review of MEMS-based drug delivery and dosing systems. Sens. Actuators A-Phys. 134(2), 555–564 (2007)

    Article  Google Scholar 

  11. M. Li, H.X. Tang, M.L. Roukes, Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotechnol. 2(2), 114–120 (2007)

    Article  Google Scholar 

  12. D.G. Senesky, B. Jamshidi, K.B. Cheng, A.P. Pisano, Harsh environment silicon carbide sensors for health and performance monitoring of aerospace systems: a review. IEEE Sens. J. 9(11), 1472–1478 (2009)

    Article  Google Scholar 

  13. C.V. Gungor, G.P. Hancke, Industrial wireless sensor networks: challenges, design principles, and technical approaches. IEEE Trans. Industr. Electron. 56(10), 4258–4265 (2009)

    Article  Google Scholar 

  14. M. Werner, G. Kroetz, H. Moller, M. Eickhoff, P. Gluche, M. Adamschik, C. Johnston, P.R. Chalker, High-temperature sensors based on SiC and diamond technology. Sens. Update 5, 141–190 (1999)

    Article  Google Scholar 

  15. G.H. Kroetz, M.H. Eickhoff, H. Moeller, Silicon compatible materials for harsh environment sensors. Sens. Actuators A-Phys. 74, 182–189 (1999)

    Article  Google Scholar 

  16. M. Willander, M. Friesel, Q.U. Wahab, B. Straumal, Silicon carbide and diamond for high temperature device applications. J. Mater. Sci. Mater. Electron. 17(1), 1–25 (2006)

    Article  Google Scholar 

  17. W.R. Fahrner, R. Job, M. Werner, Sensors and smart electronics in harsh environment applications. Microsyst. Technol. 7, 138–1144 (2001)

    Article  Google Scholar 

  18. P.G. Neudeck, R.S. Okojie, L.Y. Chen, High-temperature electronics - a role for wide bandgap semiconductors? Proc. IEEE 90(6), 1065–1076 (2002)

    Article  Google Scholar 

  19. M.R. Werner, W.R. Fahrner, Review on materials, microsensors, systems, and devices for high-temperature and harsh-environment applications. IEEE Trans. Industr. Electron. 48(2), 249–257 (2001)

    Article  Google Scholar 

  20. M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu, Silicon carbide MEMS for harsh environments. Proc. IEEE 86(8), 1594–1610 (1998)

    Article  Google Scholar 

  21. P.M. Sarro, Silicon carbide as a new MEMS technology. Sens. Actuators A-Phys. 82, 210–218 (2000)

    Article  Google Scholar 

  22. D. Masse, Market for GaN and SiC semiconductors set to rise 18x from 2012 to 2022. J. Microwave 56(6), 55 (2013)

    Google Scholar 

  23. L. Wang, S. Dimitrijev, J. Han, A. Iacopi, L. Hold, P. Tanner, H.B. Harrison, Growth of 3C-SiC on 150-mm Si(100) substrates by alternating supply epitaxy at \(1000^{\circ }\)C. Thin Solid Films 519, 6443–6446 (2011)

    Article  Google Scholar 

  24. Commercial datasheet 2014; Durham, NC: Cree Inc., www.cree.com (2014)

  25. R. Maboudian, C. Carraro, D.G. Senesky, C.S. Roper, Advances in silicon carbide science and technology at the micro-and nanoscales. J. Vac. Sci. Technol. A 31(5), 050805 (2013)

    Article  Google Scholar 

  26. W.D. Edwards, R.P. Beaulieu, Germanium piezoresistive element on a flexible substrate. J. Phys. E: Sci. Instrum. 2(2), 613–615 (1969)

    Article  Google Scholar 

  27. A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Q.C. Chen, M.A. Khan, Piezoresistive effect in wurtzite n type GaN. Appl. Phys. Lett. 68, 818 (1996)

    Article  Google Scholar 

  28. V. Tilak, A. Vertiatchikh, J. Jiang, N. Reeves, S. Dasgupta, Piezoresistive and piezoelectric effects in GaN. Phys. Status Solidi (C) 6, 2307–2311 (2006)

    Article  Google Scholar 

  29. C.H. Park, B.H. Cheong, K.H. Lee, K.J. Chang, Structural and electronic properties of cubic, 2H, 4H and 6H SiC. Phys. Rev. B 49(7), 4485–4493 (1994)

    Article  Google Scholar 

  30. J.B. Casady, R.W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid State Electron. 39(10), 1409–1422 (1996)

    Article  Google Scholar 

  31. V. Cimalla, J. Pezoldt, O. Ambacher, Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications. J. Phys. D: Appl. Phys. 379(3–4), 149–255 (2003)

    Google Scholar 

  32. M. Wijesundara, R. Azevedo, Silicon Carbide Microsystems for Harsh Environments (Springer, Berlin, 2011)

    Book  Google Scholar 

  33. Q. Zhang, R. Callanan, M.K. Das, S.H. Ryu, A.K. Agarwal, J.W. Palmour, SiC power devices for microgrids. IEEE. Trans. Power Electron. 25(12), 2889–2896 (2010)

    Article  Google Scholar 

  34. P. Friedrichs, SiC power devices as enabler for high power density-aspects and prospects. Mater. Sci. Forum 778, 1104–1109 (2014)

    Article  Google Scholar 

  35. G.S. Chung, J.M. Jeong, Fabrication of micro heaters on polycrystalline 3C-SiC suspended membranes for gas sensors and their characteristics. Microelectron. Eng. 87, 2348–2352 (2010)

    Article  Google Scholar 

  36. J.G. Lee, M.I. Lei, S.P. Lee, S. Rajgopal, M. Mehregany, Micro flow sensor using polycrystalline silicon carbide. J. Sens. Sci. Technol. 18(2), 147–153 (2009)

    Article  Google Scholar 

  37. T. Dinh, D.V. Dao, H.P. Phan, L. Wang, A. Qamar, N.T. Nguyen, P. Tanner, M. Rybachuk, Charge transport and activation energy of amorphous silicon carbide thin film on quartz at elevated temperature. Appl. Phys. Express 8(6), 061303 (2015)

    Article  Google Scholar 

  38. S. Ma, S. Wang, F. Iacopi, H. Huang, A resonant method for determining the residual stress and elastic modulus of a thin film. Appl. Phys. Lett. 103(3), 031603 (2013)

    Article  Google Scholar 

  39. G. Cheng, T.H. Chang, Q. Qin, H. Huang, Y. Zhu, Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density. Nano Lett. 14(2), 754–758 (2014)

    Article  Google Scholar 

  40. S. Gong, N.K. Kuo, G. Piazza, GHz high-Q lateral overmoded bulk acoustic-wave resonators using epitaxial SiC thin film. J. Micromech. Syst. 21(2), 253–255 (2012)

    Article  Google Scholar 

  41. A.R. Kermany, G. Brawley, N. Mishra, E. Sheridan, W.P. Bowen, F. Iacopi, Microresonator with Q-factors over a million from highly stressed epitaxial silicon carbide on silicon. Appl. Phys. Lett. 104, 801901 (2014)

    Article  Google Scholar 

  42. Z. Wang, J. Lee, P.X.-L. Feng, Spatial mapping of multimode Brownian motions in high-frequency silicon carbide microdisk resonators. Nat. Commun. 5, 5158 (2014)

    Article  Google Scholar 

  43. C. Forster, V. Cimalla, V. Lebedev, J. Pezoldt, K. Brueckner, R. Stephan, M. Hein, E. Aperathitis, O. Ambacher, Group III-nitride and SiC based micro- and nanoelectromechanical resonators for sensor applications. Phisica Status Solidi A 203(7), 1829–1833 (2006)

    Article  Google Scholar 

  44. A. Oliveros, A. Guiseppi-Elie, S.E. Saddow, Silicon carbide: a versatile material for biosensor applications. Biomed. Microdevices 15(2), 353 (2013)

    Article  Google Scholar 

  45. S.E. Saddow, C.L. Frewin, C. Coletti, N. Schettini, E. Weeber, A. Oliveros, Single-crystal silicon carbide: a bio-compatible and hemocompatible semiconductor for advanced biomedical applications. Mater. Sci. Forum 679–680, 824–830 (2011)

    Article  Google Scholar 

  46. G. Gabriel, I. Erill, J. Caro, R. Gomez, D. Riera, R. Villa, Manufacturing and full characterization of silicon carbide based multi-sensor micro-probe for biomedical applications. Microelectron. J. 38, 406–415 (2007)

    Article  Google Scholar 

  47. S. Fujita, Wide-bandgap semiconductor materials: for their full bloom. Jpn. J. Appl. Phys. 54(3), 030101 (2015)

    Article  Google Scholar 

  48. H. Amano, Progress and prospect of the growth of wide-band-gap group III nitrides: development of the growth method for single-crystal bulk GaN. J. Jpn. Appl. Phys. 52, 050001 (2013)

    Article  Google Scholar 

  49. N.G. Wright, A.B. Horsfall, SiC sensors: a review. J. Phys. D: Appl. Phys. 40, 6345–6354 (2007)

    Article  Google Scholar 

  50. C.M. Zetterling, Integrated circuits in silicon carbide for high-temperature applications. MRS Bull. 40(05), 431–438 (2015)

    Article  Google Scholar 

  51. N.G. Wright, A.B. Horsfall, K. Vassilevski, Prospects for SiC electronics and sensors. Mater. Today 11(1), 16–21 (2008)

    Article  Google Scholar 

  52. J.A. Lely, Sublimation process for manufacturing silicon carbide crystals, United States Patent 2, 854, 364 (30.09.58) (1958)

    Google Scholar 

  53. Y.M. Tairov, V.F. Tsvetkov, Investigation of growth processes of ingots of silicon carbide single crystals. J. Cryst. Growth 43, 209–212 (1978)

    Article  Google Scholar 

  54. D. Chaussende, P.J. Wellmann, M. Pons, Status of SiC bulk growth processes. J. Phys. D: Appl. Phys. 40, 6150–6158 (2007)

    Article  Google Scholar 

  55. A. Itoh, H. Matsunami, Single crystal growth of SiC and electronic devices. Crit. Rev. Solid State Mater. Sci. 22(2), 111–197 (1997)

    Article  Google Scholar 

  56. M. Portail, M. Zielinski, T. Chasssagne, S. Roy, M. Nemoz, Comparative study of the role of the nucleation stage on the final crystalline quality of (111) and (100) silicon carbide films deposited on silicon substrates. J. Appl. Phys. 105, 083505 (2009)

    Article  Google Scholar 

  57. T. Fuyuki, T. Yoshinobu, H. Matsunami, Atomic layer epitaxy controlled by surface superstructure in SiC. Thin Solid Films 225, 225 (1993)

    Article  Google Scholar 

  58. H. Zhuang, L. Zhang, T. Staedler, X. Jiang, Low temperature hetero-epitaxial growth of 3C-SiC films on Si utilizing microwave plasma CVD. Chem. Vap. Depos. 19, 29–37 (2013)

    Article  Google Scholar 

  59. K. Yasui, H. Miura, M. Takata, T. Akadane, SiCOI structure fabricated by catalytic chemical vapor deposition. Thin Solid Film 516, 644–647 (2008)

    Article  Google Scholar 

  60. A. Gupta, C. Jacob, Selective epitaxy and lateral overgrowth of 3C-SiC on Si - a review. Prog. Cryst. Growth Charact. Mater. 51, 43–69 (2005)

    Article  Google Scholar 

  61. V. Heera, D. Panknin, W. Skorupa, P-type doping of SiC by high dose Al implatation-problems and progress. Appl. Surf. Sci. 184, 307–316 (2001)

    Article  Google Scholar 

  62. L. Wang, S. Dimitrijev, P. Tanner, J. Zou, Aluminum induced in situ crystallization of armourphous SiC. Appl. Phys. Lett. 94, 181909 (2009)

    Article  Google Scholar 

  63. S.A. Sakwe, R. Muller, P.J. Wellmann, Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC. J. Cryst. Growth 289, 520–526 (2006)

    Article  Google Scholar 

  64. D. Zhuang, J.H. Edgar, Wet etching of GaN, AlN, and SiC: a review. Mater. Sci. Eng. R-Rep. 48(1), 1–46 (2005)

    Article  Google Scholar 

  65. J.S. Shor, R.M. Osgood, A.D. Kurtz, Photoelectrochemical conductivity selective etch stops for SiC. Appl. Phys. Lett. 60, 1001 (1992)

    Article  Google Scholar 

  66. T.K. Hossain, S. MacLaren, J.M. Engel, C. Liu, I. Adesida, R. Okojie, The fabrication of suspended micromechanical structures from bulk 6H-SiC using an ICP-RIE system. J. Micromech. Microeng. 16, 751–756 (2006)

    Article  Google Scholar 

  67. S. Tanaka, K. Rajanna, T. Abe, M. Esashi, Deep reactive ion etching of silicon carbide. J. Vac. Sci. Technol. B. 19(6), 2173–2176 (2001)

    Article  Google Scholar 

  68. K.N. Vinod, C.A. Zorman, A.A. Yasseen, M. Mehregany, Fabrication of low defect density 3C-SiC on \(\text{SiO}_2\) structures using wafer bonding techniques. J. Electron. Mater. 27(3) (1998)

    Google Scholar 

  69. A. Sandhu, S. Jinno, Piezoresistive properties of 3C-SiC films anodically bonded to aluminosilicate glass substrates. Electron. Lett. 36(6), 497–498 (2000)

    Article  Google Scholar 

  70. P. Cong, D.J. Young, Single crystal 6H-SiC MEMS fabrication based on smart-cut technique. J. Micromech. Microeng. 15, 2243–2248 (2005)

    Article  Google Scholar 

  71. R. Yang, Z. Wang, J. Lee, K. Ladhane, D.J. Young, P.X.-L. Feng, 6H-SiC microdisk torsional resonators in a smart-cut technology. Appl. Phys. Lett. 104, 091906 (2014)

    Article  Google Scholar 

  72. W. Reichert, E. Obermeier, J. Stoemenos, \(\beta \)-SiC films on SOI substrates for high temperature applications. Diam. Relat. Mater. 6(10), 1448–1450 (1997)

    Article  Google Scholar 

  73. C.A. Zorman, R.J. Parro, Micro- and nanomechanical structures for silicon carbide MEMS and NEMS. Phys. Status Solidi B 245, 1404–1424 (2008)

    Article  Google Scholar 

  74. T. Akiyama, D. Briand, N.F. de Rooij, Piezoresistive n-type 4H-SiC pressure sensor with membrane formed by mechanical milling, in Proceedings of the IEEE Sensors Conference 2011 (2011), p. 222

    Google Scholar 

  75. A.A. Yasseen, C.H. Wu, C.A. Zorman, M. Mehregany, Fabrication and testing of surface micromachined silicon carbide micromotors, in Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems (Florida, USA, 1999), pp. 644–649

    Google Scholar 

  76. A.C.H. Rowe, Piezoresistance in silicon and its nanostructures. Mater. Res. Soc. 29(6), 731–744 (2014)

    Article  Google Scholar 

  77. J.C. Doll, B.L. Pruitt, Piezoresistor Design and Applications (Springer, Berlin, 2013)

    Book  Google Scholar 

  78. G.L. Bir, G.E. Pirkus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974)

    Google Scholar 

  79. Y. Sun, S.E. Thompson, T. Nishida, Strain Effect in Semiconductor: Theory and Device Applications, 1st edn. (Springer, Berlin, 2009)

    Google Scholar 

  80. C.S. Smith, Piezoresistance effect in germanium and silicon. Phys. Rev. 94, 42 (1954)

    Article  Google Scholar 

  81. J. Bardeen, W. Shockley, Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 80, 72–80 (1950)

    Article  Google Scholar 

  82. C. Herring, Transport properties of a many valley semiconductor. Bell Syst. Tech. J. 34, 237–290 (1955)

    Article  Google Scholar 

  83. C. Herring, E. Vogt, Transport and deformation potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101, 944 (1956)

    Article  Google Scholar 

  84. D. Long, Stress dependence of the piezoresistance effect. J. App. Phys. 32, 2050–2051 (1961)

    Article  Google Scholar 

  85. Y. Kanda, The piezoresistive effect effect of silicon. Sens. Actuators A-Phys. 28, 83–91 (1991)

    Article  Google Scholar 

  86. Y. Kanda, A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans. Electron Devices 29(1), 64–70 (1982)

    Article  Google Scholar 

  87. I.V. Rapatskaya, G.E. Rudashevskii, M.G. Kasaganova, M.I. Iglitsin, M.B. Reifman, E.F. Fedetova, The piezoresistive effect coefficients of n-type \(\alpha \)-SiC. Sov. Phys. Solid State 9(12), 2833 (1968)

    Google Scholar 

  88. G.N. Guk, N.Y. Usoltseva, V.S. Shadrin, N.K. Prokopeva, The piezoresistive effect of cubic silicon carbide under hydrostatic compression. Sov. Phys. Semicond. 10(1), 83 (1976)

    Google Scholar 

  89. G.N. Guk, V.M. Lyubimskii, E.P. Gofman, V.B. Zinovev, E.A. Chalyi, Temperature dependence of the piezoresistive effect constant \(\pi _{11}\) of n-type SiC(6H). Sov. Phys. Semicond. 9, 104 (1974)

    Google Scholar 

  90. J.S. Shor, D. Goldstein, A.D. Kurtz, Characterization of n-type \(\beta \)-Sic as a piezoresistor. IEEE Trans. Electron Devices 40(6), 1093–1099 (1993)

    Article  Google Scholar 

  91. M. Eickhoff, H. Moller, G. Kroetz, J.V. Berg, R. Ziermann, A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates. Sens. Actuators A-Phys. 74, 56–59 (1999)

    Article  Google Scholar 

  92. A. Qamar, H.-P. Phan, D.V. Dao, P. Tanner, T. Dinh, L. Wang, S. Dimitrijev, The dependence of offset voltage in p-type 3C-SiC van der pauw device on applied strain. IEEE Electron Devices Lett. 36(7), 708–710 (2015)

    Article  Google Scholar 

  93. M. Eickhoff, H. Moller, J. Stoemenos, S. Zappe, G. Kroetz, M. Stutzmann, Influence of crystal quality on the electronic properties of n-type 3C-SiC grown by low temperature low pressure chemical vapor deposition. J. Appl. Phys. 95, 7908 (2004)

    Article  Google Scholar 

  94. M. Eickhoff, M. Stutzmann, Influence of crystal defects on the piezoresistive properties of 3C-SiC. J. Appl. Phys. 96, 2878 (2004)

    Article  Google Scholar 

  95. C.H. Wu, C.A. Zorman, M. Mehregany, Fabrication and testing of bulk micromachined silicon carbide piezoresistive pressure Sensors for high temperature applications. IEEE Sens. J. 6(2), 316–324 (2006)

    Article  Google Scholar 

  96. H.I. Kuo, C.A. Zorman, M. Mehregany, Fabrication and testing of single crystalline 3C-SiC devices using a novel SiC on insulator substrate, in Proceedings of the Transducer 03 International Conference on Solid State Sensors and Actuators (Boston, USA, 2003), pp. 724–745

    Google Scholar 

  97. T. Toriyama, S. Sugiyama, Analysis of the piezoresistive effect in n-type \(\beta \)-SiC based on electron transport and deformation potential theory, International Symposium on Micromechatronic and Human Science (2000), pp. 175–180

    Google Scholar 

  98. T. Toriyama, S. Sugiyama, Analysis of the piezoresistive effect in n-type \(\beta \)-SiC for high-temperature mechanical sensors. Appl. Phys. Lett. 81, 2797 (2002)

    Article  Google Scholar 

  99. J.S. Shor, L. Bemis, A.D. Kurtz, Characterization of monolithic n-type 6H-SiC piezoresistive sensing elements. IEEE Trans. Electron Devices 41(5), 661–665 (1994)

    Article  Google Scholar 

  100. R.S. Okojie, A.A. Ned, A.D. Kurtz, W.N. Carr, Characterization of highly doped n- and p-type 6H-SiC piezoresistors. IEEE Trans. Electron Devices 45(4), 785–790 (1998)

    Article  Google Scholar 

  101. T. Toriyama, S. Sugiyama, Analysis of piezoresistance in n-type 6H-SiC for high temperature mechanical sensors, Proceedings of the Transducers 2003 International Conference on Solid State Sensors and Actuators (Boston, USA, 2003), pp. 758–761

    Google Scholar 

  102. T. Toriyama, Piezoresistance consideration on n-type 6H SiC for MEMS-based piezoresistance sensors. J. Micromech. Microeng. 14, 1445–1448 (2004)

    Article  Google Scholar 

  103. T.K. Kinoshita, M. Itoh, M. Schadt, G. Pensl, Theory of the electron mobility in n-type 6H-SiC. J. Appl. Phys. 85(12), 8193–8198 (1999)

    Article  Google Scholar 

  104. W.J. Choyke, H. Matsunami, Silicon Carbide: Recent Major Advances (Springer Science & Business Media, Berlin, 2004)

    Book  Google Scholar 

  105. T. Akiyama, D. Briand, N.F. de Rooiji, Design-dependent gauge factors of highly doped n-type 4H-SiC piezoresistors. J. Micromech. Microeng. 22, 085034 (2012)

    Article  Google Scholar 

  106. T. Homma, K. Kamimura, H.Y. Cai, Y. Onuma, Preparation of polycrystalline SiC films for sensors used at high temperature. Sens. Sensors A-Phys. 40, 93–96 (1994)

    Article  Google Scholar 

  107. J. Strass, M. Eickhoff, The influence of crystal quality on the piezoresistive effect of p-SiC between RT and \(450^{\circ }\)C measured by using microstructures, Proceedings of the Transducer 97 International Conference on Solid State Sensors and Actuators (Chicago, USA, 1997), pp. 1439–1442

    Google Scholar 

  108. M. Eickhoff, M. Moller, G. Kroetz, M. Stutzmann, Piezoresistive properties of single crystalline, polycrystalline, and nanocrystalline n-type 3C-SiC. J. Appl. Phys. 96, 2872–2877 (2004)

    Article  Google Scholar 

  109. J.Y.W. Seto, Piezoresistive properties of polycrystalline silicon. J. Appl. Phys. 47, 4780 (1976)

    Article  Google Scholar 

  110. X. Liu, C. Shi, R. Chuai, Polycrystalline silicon piezoresistive nano thin film technology, Solid State Circuits Technologies (2010)

    Google Scholar 

  111. V. Mosser, J. Suski, J. Goss, E. Obermeier, Piezoresistive pressure sensors based on polycrystalline silicon. Sens. Actuators A 28(2), 113–132 (1991)

    Article  Google Scholar 

  112. M.A. Fraga, M. Massi, H. Furlan, I.C. Oliveira, L.A. Rasia, C.F.R. Mateus, Preliminary evaluation of the influence of the temperature on the performance of a piezoresistive pressure sensor based on a-SiC film. Microsys. Technol. 17, 477–480 (2011)

    Article  Google Scholar 

  113. M.A. Fraga, H. Furlan, R.S. Pessoa, L.A. Rasia, C.F.R. Mateus, Studies on SiC, DLC and TiO2 thin films as piezoresistive sensor materials for high temperature application. Microsys. Technol. 18, 1027–1033 (2012)

    Article  Google Scholar 

  114. A. Kishimoto, D. Mutaguchi, H. Hayashi, Y. Numata, High temperature the piezoresistive effect properties of 6H-SiC ceramics doped with trivalent elements. Mater. Sci. Eng. B 135, 145–149 (2006)

    Article  Google Scholar 

  115. A. Kishimoto, Y. Okada, H. Hayashi, Improvement of the piezoresistive effect properties of silicon carbide ceramics through co-doping of aluminum nitride and nitrogen. Ceram. Int. 34, 845–848 (2008)

    Article  Google Scholar 

  116. K. Zekentes, K. Rogdakis, SiC nanowires: material and devices. J. Phys. D: Appl. Phys. 44, 133011 (2011)

    Article  Google Scholar 

  117. R. Wu, K. Zhou, C.Y. Yue, J. Wei, Y. Pan, Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 72, 1–60 (2015)

    Article  Google Scholar 

  118. A. Lugstein, M. Steinmair, A. Steiger, H. Kosina, E. Bertagnolli, Anomalous piezoresistance effect in ultrastrained silicon nanowires. Nano Lett. 10, 3204–3208 (2010)

    Article  Google Scholar 

  119. R. He, P. Yang, Giant the piezoresistive effect effect in silicon nanowires. Nature Nanotechnol. 1, 42–46 (2006)

    Article  Google Scholar 

  120. A.C.H. Rowe, Silicon nanowires feel the pinch. Nature Nanotechnol. 3(6), 311–312 (2008)

    Article  Google Scholar 

  121. R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, The piezoresistive effect behaviors of ultra-strained SiC nanowires. Appl. Phys. Lett. 101, 233109 (2012)

    Article  Google Scholar 

  122. H. Zeng, T. Li, M. Bartenwerfer, S. Fatikow, Y. Wang, In situ SEM electromechanical characterization of nanowire using an electrostatic tensile device. J. Phys. D: Appl. Phys. 46, 305501 (2013)

    Article  Google Scholar 

  123. J. Bi, G. Wei, L. Wang, F. Gao, J. Zheng, B. Tang, W. Yang, Highly sensitive piezoresistance behaviors of n-type 3C-SiC nanowires. J. Mater. Chem. C 1, 4514 (2013)

    Article  Google Scholar 

  124. F. Gao, J. Zheng, M. Wang, G. Wei, W. Yang, Piezoresistance behaviors of p-type 6H-SiC nanowires. Chem. Commun. 47, 11993–11995 (2011)

    Article  Google Scholar 

  125. K. Nakamura, T. Toriyama, S. Sugiyama, Analysis on piezoresistive property of silicon carbide on the basis of first-principles calculation, Proceedings of the 27th Sensor Symposium (2010), pp. 1–16

    Google Scholar 

  126. K. Nakamura, T. Toriyama, S. Sugiyama, First-principles simulation on piezoresistivity in alpha and beta silicon carbide nanosheets. Jpn. J. Appl. Phys. 50, 06GE05 (2011)

    Article  Google Scholar 

  127. K. Nakamura, Y. Isono, T. Toriyama, First-principles study on piezoresistance effect in silicon nanowires. Jpn. J. Appl. Phys. 47, 5132–5138 (2008)

    Article  Google Scholar 

  128. K. Nakamura, Y. Isono, T. Toriyama, S. Sugiyama, Simulation of piezoresistivity in n-type single-crystal silicon on the basis of the first-principles band structure. Phys. Rev. B 80, 045205 (2009)

    Article  Google Scholar 

  129. Y. Yang, X. Li, Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement. Nanotechnology 22, 015501 (2011)

    Article  Google Scholar 

  130. L.M. Terman, An investigation of surface states at silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid State Electron. 5, 285 (1962)

    Article  Google Scholar 

  131. R. Ziermann, J.V. Berg, W. Reichert, E. Obermeier, M. Eichkoff, G. Kroetz, A high temperature pressure sensor with \(\beta \)-SiC piezoresistors on SOI substrates, Proceedings of the Transducers 97 International Conference on Solid State Sensors and Actuators (Chicago, USA, 1997), pp. 1411–1414

    Google Scholar 

  132. J.V. Berg, R. Ziermann, W. Reichert, E. Obermeier, Measurement of the cylinder pressure in combustion engines with a piezoresistive \(\beta \)-SiC-on-SOI pressure sensor, Proceedings of the High Temperature Electronics Conference (1998), pp. 245–249

    Google Scholar 

  133. R. Ziermann, J.V. Berg, E. Obermeier, F. Wischmeyer, E. Niemann, H. Moller, M. Eickhoff, G. Kroetz, High temperature piezoresistive \(\beta \)-SiC-on-SOI pressure sensor with on chip SiC thermistor. Mater. Sci. Eng. B 61–62, 576–578 (1999)

    Article  Google Scholar 

  134. G.S. Chung, Fabrication and characterization of a polycrystalline 3C-SiC piezoresistive micro-pressure sensor. J. Korean Phys. Soc. 56(6), 1759–1762 (2010)

    Article  Google Scholar 

  135. G. Wieczorek, B. Schellin, E. Obermeier, G. Fagnani, L. Drera, SiC based pressure sensor for high-temperature environments, in Proceedings of the IEEE Sensors Conference (2007), pp. 748–751

    Google Scholar 

  136. R.S. Okojie, A.A. Ned, A.D. Kurtz, Operation of \(\alpha \)(6H)-SiC pressure sensor at \(500^{\circ }\)C. Sens. Actuators A-Phys. 66, 200–204 (1998)

    Article  Google Scholar 

  137. R.S. Okojie, D. Lukco, C. Blaha, V. Nguyen, E. Savrun, Zero offset drift suppression in SiC pressure sensors at \(600^\circ \)C, in Proceedings of the IEEE Sensors Conference (2010), pp. 2269–2274

    Google Scholar 

  138. R.S. Okojie, D. Lukco, V. Nguyen, E. Savrun, 4H-SiC piezoresistive pressure sensors at \(800^\circ \)C with observed sensitivity recovery. IEEE Electron Device Lett. 36(2), 174–176 (2015)

    Article  Google Scholar 

  139. G.S. Chung, R. Maboudian, Bonding characteristics of 3C-SiC wafers with hydrofluoric acid for high-temperature MEMS applications. Sens. Actuators A-Phys. 119, 599–604 (2005)

    Article  Google Scholar 

  140. F. Laermer, A. Urban, Challenges, developments and applications of silicon deep reactive ion etching. Microelectron. Eng. 67–68, 349–355 (2003)

    Article  Google Scholar 

  141. A.R. Atwell, R.S. Okojie, K.T. Kornegay, S.L. Roberson, A. Beliveau, Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive accelerometers. Sens. Actuators A-Phys. 104, 11–18 (2003)

    Article  Google Scholar 

  142. M.A. Fraga, H. Furlan, S.M. Wakavaiachi, M. Massi, Fabrication and characterization of piezoresistive strain sensors for high temperature applications, in Proceedings of the IEEE International Conference on Industrial Technology (ICIT) (2010), pp. 513–516

    Google Scholar 

  143. M. Kumar, H. Bhaskaran, Ultrasensitive room-temperature piezoresistive transduction in graphene-based nanoelectromechanical systems. Nano Lett. 15(4), 2562–2567 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang-Phuong Phan .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Phan, HP. (2017). Introduction and Literature Review. In: Piezoresistive Effect of p-Type Single Crystalline 3C-SiC. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-55544-7_1

Download citation

Publish with us

Policies and ethics