Skip to main content

Smith-Waterman Acceleration in Multi-GPUs: A Performance per Watt Analysis

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2017)

Abstract

We present a performance per watt analysis of CUDAlign 4.0, a parallel strategy to obtain the optimal alignment of huge DNA sequences in multi-GPU platforms using the exact Smith-Waterman method. Speed-up factors and energy consumption are monitored on different stages of the algorithm with the goal of identifying advantageous scenarios to maximize acceleration and minimize power consumption. Experimental results using CUDA on a set of GeForce GTX 980 GPUs illustrate their capabilities as high-performance and low-power devices, with a energy cost to be more attractive when increasing the number of GPUs. Overall, our results demonstrate a good correlation between the performance attained and the extra energy required, even in scenarios where multi-GPUs do not show great scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ada, L.: Adafruit INA219 Current Sensor Breakout. https://learn.adafruit.com/adafruit-ina219-current-sensor-breakout

  2. Alonso, P., Badía, R., Labarta, J., Barreda, M., Dolz, M., Mayo, R., Quintana-Ortí, E., Reyes, R.: Tools for power-energy modelling and analysis of parallel scientific applications. In: Proceedings of 41st International Conference on Parallel Processing (ICPP 2012), pp. 420–429. IEEE Computer Society, September 2012

    Google Scholar 

  3. BeagleBone: Beaglebone black. http://beagleboard.org/BLACK

  4. Cheah, R., Halim, A., Al-Junid, S., Khairudin, N.: Design and analysis of low powered DNA sequence alignment accelerator using ASIC. In: Proceedings of 9th WSEAS International Conference on Microelectronics, Nanoelectronics and Optoelectronics (MINO 2010), pp. 107–113, March 2010

    Google Scholar 

  5. Deng, X., Li, J., Cheng, J.: Predicting protein model quality from sequence alignments by support vector machines. J. Proteomics Bioinform. 9(2) (2013)

    Google Scholar 

  6. González-Rincón, J.: Sistema basado en open source hardware para la monitorización del consumo de un computador. Master thesis Project. Universidad Complutense de Madrid (2015)

    Google Scholar 

  7. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol. 162(3), 705–708 (1982)

    Article  Google Scholar 

  8. Hamidouche, K., Machado, F., Falcou, J., Melo, A., Etiemble, D.: Parallel Smith-Waterman comparison on multicore and manycore computing platforms with BSP++. Int. J. Parallel Program. 41(1), 111–136 (2013)

    Article  Google Scholar 

  9. Hasan, L., Zafar, H.: Performance versus power analysis for bioinformatics sequence alignment. J. Appl. Res. Technol. 10(6), 920–928 (2012)

    Google Scholar 

  10. Igual, F., Jara, L., Gómez, J., Piñuel, L., Prieto, M.: A power measurement environment for PCIe accelerators. Comput. Sci. - Res. Develop. 30(2), 115–124 (2015)

    Article  Google Scholar 

  11. Korpar, M., Sikic, M.: SW# GPU-enabled exact alignmens on genome scale. J. Bioinform. 29(19), 2494–2495 (2013)

    Article  Google Scholar 

  12. Li, H., Homer, N.: A survey of sequence alignment algorithms for next-generation sequencing. Briefings Bioinform. 11(5), 473–483 (2010)

    Article  Google Scholar 

  13. Liu, Y., Tam, T., Lauenroth, F., Schmidt, B.: SWAPHI-LS: Smith-Waterman algorithm on xeon phi coprocessors for long DNA sequences. In: IEEE Cluster, pp. 257–265 (2014)

    Google Scholar 

  14. Mount, D.: Bioinformatics: Sequence and Genome Analysis. CSHL Press, New York (2004)

    Google Scholar 

  15. Myers, E., Miller, W.: Optimal alignment in linear space. Comput. Appl. Biosci. (CABIOS) 4(1), 11–17 (1988)

    Google Scholar 

  16. NCBI: Blast: Basic local alignment search tool (2017). https://blast.ncbi.nlm.nih.gov/Blast.cgi

  17. NCBI: NCBI Chimpanze Website (2017). https://www.ncbi.nlm.nih.gov/genome/gdv/?context=genome&acc=GCF_000001515.7&chr=22

  18. NCBI: NCBI Human Website (2017). https://www.ncbi.nlm.nih.gov/genome/gdv/?context=genome&acc=GCF_000001405.36&chr=22

  19. NCBI: NCBI Web Site (2017). http://www.ncbi.nlm.nih.gov

  20. Needleman, S., Wunsch, C.: A general method applicable to the search for similarities in the aminoacid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

    Article  Google Scholar 

  21. Nvidia: CUDA Home Page, October 2010. http://developer.nvidia.com/object/cuda.html

  22. Pfister, G.: In Search of Clusters: The Coming Battle in Lowly Parallel Computing. Prentice Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  23. Pierce, B., Wiehe, K., Hwang, H., Kim, B., Vreven, T., Weng, Z.: ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. J. Bioinform. 30(12), 1771–1773 (2014)

    Article  Google Scholar 

  24. Sandes, E., Melo, A.: CUDAlign: using GPU to accelerate the comparison of megabase genomic sequences. In: Proceedings of 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP 2010), pp. 137–146 (2010)

    Google Scholar 

  25. Sandes, E., Melo, A.: Smith-Waterman alignment of huge sequences with GPU in linear space. In: Proceedings of IEEE International Parallel and Distributed Processing Symposium (IPDPS 2011), pp. 1199–1211 (2011)

    Google Scholar 

  26. Sandes, E., Melo, A.: Retrieving Smith-Waterman alignments with optimizations for megabase biological sequences using GPU. IEEE Trans. Parallel Distrib. Syst. 24(5), 1009–1021 (2013)

    Article  Google Scholar 

  27. Sandes, E., Miranda, G., Martorell, X., Ayguadé, E., Teodoro, G., Melo, A.: CUDAlign 4.0: incremental speculative traceback for exact chromosome-wide alignment in GPU clusters. IEEE Trans. Parallel Distrib. Syst. 27(10), 2838–2850 (2016)

    Article  Google Scholar 

  28. Sandes, E., Miranda, G., Martorell, X., Ayguadé, E., Teodoro, G., Melo, A.: MASA: a multi-platform architecture for sequence aligners with block pruning. ACM Trans. Parallel Comput. 2(4), 28:1–28:31 (2016)

    Google Scholar 

  29. Sandes, E., Miranda, G., Melo, A., Martorell, X., Ayguadé, E.: CUDAlign 3.0: parallel biological sequence comparison in large GPU clusters. In: Proceedings of IEEE/ACM CCGrid 2014, pp. 160–169 (2014)

    Google Scholar 

  30. Smith, T., Waterman, M.: Identification of common molecular sequences. J. Mol. Biol. 127(1), 195–197 (1981)

    Article  Google Scholar 

  31. The Khronos Group: The OpenCL Core API Specification, Headers and Documentation (2009). http://www.khronos.org/registry/cl

  32. Wan, P., Che, D.: Constructing phylogenetic trees using interacting pathways. Bioinformation 9(7), 363–367 (2013)

    Article  Google Scholar 

  33. Zou, D., Dou, Y., Xia, F.: Optimization schemes and performance evaluation of Smith-Waterman algorithm on CPU, GPU and FPGA. Concurrency Comput. Practice Experience 24, 1625–1644 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education of Spain under ProjectTIN2013-42253-P and by the Junta de Andalucia under Project of Excellence P12-TIC-1741. We also thank Nvidia for hardware donations within GPU Education Center 2011–2016 and GPU Research Center 2012–2016 awards at the University of Malaga (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ujaldón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pérez Serrano, J., De Oliveira Sandes, E.F., Magalhaes Alves de Melo, A.C., Ujaldón, M. (2017). Smith-Waterman Acceleration in Multi-GPUs: A Performance per Watt Analysis. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2017. Lecture Notes in Computer Science(), vol 10209. Springer, Cham. https://doi.org/10.1007/978-3-319-56154-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56154-7_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56153-0

  • Online ISBN: 978-3-319-56154-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics